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Statistics is, or should be, about scientific investigation and how to do it better, 
but many statisticians believe it is a branch of mathematics. 

George E.P. Box (1919–2013) 

1. INTRODUCTION 

Statistical methods are an essential element to making quality measurements, allowing the organization 
and interrogation of data in a structured way. This introductory chapter describes key concepts of 
measurement statistics that are used in many nondestructive assay (NDA) methods and is intended as a 
primer to the reading list provided in the reference section. (Croft and Burr 2016; Smith 1991; Smith 
2013; Taylor 1997; Triola 2017). The textbooks by Triola on elementary statistics (Figure 1), Taylor, and 
Smith (2013) introduce uncertainty analysis in the physical sciences. Smith (1991) provides a rigorous 
introduction with examples to correlated variables. These texts collectively offer an excellent foundation 
for understanding essential statistical concepts.  

The presence of a standardized system of measurements is so 
ingrained that it is easy to overlook. Even so, measurements that 
can be trusted by both domestic and international practitioners 
and stakeholders are the basis of trade, enable the development 
and application of technology, and underpin the scientific 
method; they are central to human civilization and culture. 
However, too often measurement practices and uncertainty 
assessment are neither well defined nor well understood across 
the different domains. This leads to a lack of consistency and 
different definitions of terminology, creating confusion, bias, 
and misunderstandings. 

By definition, metrology is the science of measurements. A 
measurement is a set of operations used to determine the value 
of a quantity where the object of a measurement is the 
measurand. A basic premise of measurement theory is that at 
the time of measurement, the quantity has a definite value. 
However, the presence of intrinsic measurement uncertainty 
means that although great care may be taken to replicate the 
measurement process, the outcomes across replicates will not 
match exactly—measurement uncertainty is always present. 
Therefore, whenever a measured value is presented, the possibility that it is wrong to some degree must 
be considered, and an appropriate design margin or contingency should be made. Because of this, no 
measurement result or scientific calculation has meaning unless the measurement uncertainty has also 
been defensibly assessed. The methodology of the measurement and the corresponding uncertainty 
assessment must be communicated in detail and with transparency and granularity so that the information 
can be reliably used for the intended purpose. Once a data set has been shown to be free of any 
confounding influences that do not need to be reported separately, the uncertainty associated with a 
measurement is typically reported at the summary level by stating the degree of confidence or degree of 
credibility (depending on the philosophical framework) that can be defensibly assigned to the 
measurement value. The measured value is the best estimate of the true, albeit unknown, value of the 
quantity of interest and is unlikely to be exact and so will almost always be higher or lower than the true 
value. One simple and common way to report the outcome of the uncertainty quantification process is to 
report a confidence interval (CI). This interval is a range of values that bracket the measured value, 
typically plus and minus a multiple, k, that has been calculated based on the uncertainty assessment. If a 

 
Figure 1. Mario Triola’s Elementary 

Statistics is considered a standard text 
within the discipline. 
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normal distribution applies to the uncertainty assessment, then k would represent a multiple of the 
standard deviation (SD). Another common way to quantify the measurement uncertainty is to estimate the 
so-called “random” and “systematic” error variance components, as will be explained later. 

Most measurements are neither direct nor absolute but instead rely on calibration of instruments that must 
first be properly designed, manufactured, and adjusted. Calibration is the process that establishes the 
mathematical relationship between the response and reference standards. These reference standards are 
extremely important and are maintained by a worldwide network of national laboratories.  
Reference standards are scientifically created values that are accepted, can be maintained, and for which a 
way exists to scale the standard value upward or downward. As an example, the former International 
Prototype of the Kilogram revised in May 2019 is shown in Figure 2. Physical reference standards are 
also used in the development and verification of measurement approaches and as part of quality assurance 
and performance demonstration programs. Measurement 
control is the process that ensures the calibration is within 
defined tolerance and that statistical process control methods 
can be applied throughout the process. Statistical methods help 
establish the calibration, monitor the health of the instrument, 
predict reliability, establish maintenance and recalibration 
intervals, identify process (performance) improvements, and 
quantify uncertainty. Statistical methods are used to manage 
resources (e.g., investment decisions in new equipment or total 
cost of ownership) and ensure best practices. 

Informally, statistics refers to a collection of numbers or facts 
(e.g., batting averages) but as used in science, statistics refers 
to quantities calculated from a sample and/or to inference. The 
sample is a subset of a population made by observations and 
measurements. For example, imagine that a large sack contains 
a mixture of blue and green marbles. One goal could be to infer 
or estimate which fraction of the marbles are blue without 
inspecting each marble. The entire contents of the sack (the 
mixture of blue and green marbles) are the entire population. If 
the total number of marbles in the sack is not too large, then it 
might be possible to remove the entire contents and count the 
number of blue and the number of green. However, when too many objects exist to reasonably count, one 
could pull marbles out of the sack to create a sample of size n. There are two ways to do this. One way 
would be to remove the n marbles without replacement. Another, sampling with replacement, would be to 
remove a single marble, record it, replace it, rerandomize the contents and make another selection and do 
this n-times If the number of marbles, N, in the sack is huge compared to the number sampled, n, then the 
difference between the information obtained by sampling with or without replacement will be small. 
However, when N is not much greater than n, the two approaches are different. In general, for radiometric 
applications, sampling with replacement is a great approximation. This example is analogous in some 
ways to making an 235U/U enrichment determination where the green marbles represent the 235U wt %, 
and the blue marbles represent the 238U wt % of a large sample. 

Descriptive statistics summarize the properties of the sample of size n. Inferential statistics extends 
beyond just the sample to make estimates about the properties of the underlying but unobserved 
population. To do this, assumptions are made to varying degrees about the mathematical form of the 
population. The mathematical form can involve model parameters (parametric) or not (nonparametric). 
This difference is what separates nonparametric and parametric approaches; semiparametric approaches 
lie in between. Estimates of the population properties are not exact because the sample is an arbitrary 

 
Figure 2. The former International 

Prototype Kilogram. Source: Bureau 
International des Poids et Mesures 

(BIPM). 
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subset of the population and is subject to random fluctuation. A pivotal quantity, or pivot, is a function of 
the sample observations and the (i.e., unobservable, and unknown true parameters of the population 
distribution, but it can be used to construct statistical tests and CIs. Pivotal quantities can be used to 
estimate estimator quality. In other words, in practice, fully understanding everything is impossible.  

Real data sets, being finite in size (and hence of limited information compared to the population from 
which they are sampled), are always nuanced. Additionally, a single “correct,” wholly objective way of 
assigning a defensible uncertainty may not exist.  

Different users may also have quite different needs for the reported results, and therefore may take 
different approaches to assessing uncertainty under various circumstances. However, assessing and 
combining uncertainties for nuclear materials accountancy and control is best and most often approached 
through frequent and applied measurement statistics. This technique, which determines the probability of 
an outcome based on the relative frequency of observations, is a powerful tool for providing a useful 
quantitative uncertainty statement.  

The overall or total measurement uncertainty (TMU) is the combination of many contributing influences. 
A list or a pie chart of fractional uncertainty contributions for a final result is conventionally called an 
uncertainty budget. When the uncertainty contributions (SDs) are independent and combined in 
quadrature, the information is often also presented in the form of the fractional variance. A few large 
uncertainty contributions typically dominate the TMU. If a lower TMU is needed to meet a particular data 
quality objective, the uncertainty budget identifies the best opportunities for improvement. These 
improvements are thus informed by the level of difficulty and resources required to deliver the greatest 
impact. However, when a particular method cannot meet a specific objective, a different technique may 
be needed.  

A general requirement is that a measurement method should be both accurate (a qualitative term meaning 
close to the true but generally unknown value of the measurand) and precise (tightly grouped, small 
variance when the measurements are repeated). It must also meet the quantitative data quality objectives 
along with other relevant constraints. To this end, uncertainty quantification (UQ) is the process of 
quantifying the quality of a measurement result and is typically stated as a single numerical value. This 
value is the total measurement error SD and is a parameter that characterizes the spread or dispersion that 
can reasonably be attributed to the measurand (assuming that the result is subject to a normal distribution 
of errors).  

The total error of the measurement, e, is usually abbreviated simply to “error” and defined as the signed 
quantity (measured value minus true). Algebraically this can be written as 

 𝑒𝑒 = 𝑥𝑥 − 𝜏𝜏, (1) 

where 𝑥𝑥 is the measured value of the measurand, and 𝜏𝜏 is the (true) value of the measurand. This 
definition and mathematical formulation are clearly the most natural in the linear (additive) model but can 
also apply to the multiplicative model case.  

A perfect measurement would return the true value each time. However, the true value of the measurand 
is never known. Indeed, the usual goal of the measurement process is to estimate the true value. However, 
in some cases, an item can be prepared (e.g., for calibration purposes or for performance testing) using 
methods with accuracy superior to those of the in-situ NDA measurement technique. In these cases, the 
value of 𝜏𝜏 may be considered as well known. Such accepted values, which may be established by superior 
analytical techniques or by convention, are sometimes referred to as conventional true values or 
nominal true values. Sometimes a particular value is adopted as a matter of convenience or by 
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comparisons and such values are known as consensus values. Conversely, the causes of error can be 
positive or negative. Table 1 describes examples of each. 

Table 1. Potential causes of total error 

Example potential causes of total error 

Mistakes or 
transcription 
errors 

Should be spotted and corrected during self-checking, working results 
in multiple ways and in peer review; ideally, these mistakes lead to 
outlier values that can be rejected due to assignable cause 

Bad practice Inadequate training may lead to unrecognized consequences; the use 
of inappropriate instrumentation or calibration items; extrapolating 
beyond a demonstrated dynamic range; assuming linearity; not 
checking for hysteresis effects 

Poor 
assumptions  

Acceptable knowledge and process knowledge should be confirmed 
and documented; when processes change, the acceptable knowledge 
(such as scaling “fingerprints” of difficult-to-measure nuclides from 
marker nuclides) needs to be reestablished; neglect of correlations 
needs to be justified 

Interferences May be recognized and correctable with an associated uncertainty or 
might not be recognized; can obscure signatures, making certain 
nuclides difficult to quantify 

Model error Arbitrary fits used outside the range of validity; the adoption of fixed 
consensus values such as specific gamma emission rates over best 
scientific values unless a suitable physics-based representation of the 
behavior is available, the functional description is only a convenient 
approximation and there will be regions where deviations will 
inevitably be larger than others; closely related to item-specific bias 

Random 
fluctuations 

Make measurements neither repeatable nor reproducible 

Influences  Causes the measurement not to be a fair (unbiased) estimate of the 
(true) value of the measurand; an example is the use of a “black box” 
data analysis code, which might use hard-coded parameters, such as 
half-life and branching ratios that are out of date—although it may be 
of interest for consistency with historical results, it could be criticized 
from the perspective of transparency and best practice 

 

A direct determination of a quantity is rarely made. Instead, the measurement is usually the result of 
interpreting a response function. Uncertainty assessments of complex measurement systems and 
procedures often require subject matter expert professional knowledge, experience, and skill. The 
expertise of a professional statistician may also be of great value. 

Two important classifications of error are recognized: random and systematic.  

Random variability in principle can be quantified by empirical statistical methods and can also be reduced 
by making repeat measurements. Precise measurements exhibit good reproducibility. Random error, er, of 
the measurement is the difference between the measured value, x, and the mean, 𝜆𝜆, that would result from 
an infinite number of measurements of the same quantity under repeatable conditions. Algebraically, this 
is represented as follows: 
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 𝑒𝑒𝑟𝑟 = 𝑥𝑥 − 𝜆𝜆. (2) 

However, systematic effects (such as operator-specific error and item-specific error) are persistent, 
consistent, and reproducible and cannot be revealed by repeated measurements. Certain drift mechanisms 
and system aging may fall into this category, depending on the time scale of the data collection. 
Systematic effects can cause even precise measurements to be inaccurate [e.g., far from the (true) value of 
the measurand]. Mathematically, systematic error, es, is defined as the difference between the long-term 
average of the measured value, λ, and the (true) value, τ, of the measurand. Algebraically, this can be 
expressed as: 

 𝑒𝑒𝑠𝑠 = 𝜆𝜆 − 𝜏𝜏. (3) 

Systematic error is used interchangeably with bias because it relates to a measuring instrument. 
Sometimes, systematic error is partitioned into short term, such as during one inspection period, or long 
term, such as during the entire data analysis period consisting of multiple inspection periods (Zhao 2010). 

When a systematic error can be identified (e.g., through analysis or intercomparison of methods), good 
practice is to try to minimize it by design and apply a suitable correction factor when possible. The 
remaining or residual systematic error then comes from the remaining uncertainty in the correction factor. 

Combining equations (2) and (3) leads to 

 𝑒𝑒 = 𝑥𝑥 − 𝜏𝜏 = (𝑥𝑥 − 𝜆𝜆) + (𝜆𝜆 − 𝜏𝜏) (4) 

or 

 𝑒𝑒 = 𝑒𝑒𝑟𝑟 + 𝑒𝑒𝑠𝑠. (5) 

Although knowing either 𝑒𝑒𝑟𝑟 or 𝑒𝑒𝑠𝑠 (and therefore 𝑒𝑒) exactly is not possible, estimates of their typical 
magnitude can be made. A formal discussion on how to do this will be proposed later in the chapter but 
for now the results will be used. Let 𝜎𝜎𝑟𝑟 and 𝜎𝜎𝑠𝑠 denote the estimated random and systematic standard 
uncertainties (SDs), respectively. Assuming that the random and systematic effects are independent, the 
combined SD, 𝜎𝜎𝑐𝑐, can be evaluated from the quadrature sum: 𝜎𝜎𝑐𝑐 ≈ �𝜎𝜎𝑟𝑟2 + 𝜎𝜎𝑠𝑠2. Note that a contribution to 
the combined standard uncertainty is either classified as random or systematic depending on (or 
conditioned by) the intended use for the measurement result. For example, to another person the random 
uncertainty assigned to a nominal value of a calibration item may become a systematic uncertainty for 
measurements that rely on the resulting calibration.  

Detailed UQ is usually undertaken at the measurement process-design stage. Comparison between design 
performance and routine or achieved performance can identify reasons for significant differences. 

The Guide to the Expression of Uncertainty in Measurement  (Chunovkina and Chursin 2001) defines two 
general types of uncertainty evaluation: (1) Type A evaluation is based on the statistical analysis of a 
series of observations; and (2) Type B evaluation is based on any means other than the statistical 
evaluation of a series of measurements, such as the following:  

• using data taken from handbooks, 
• compilations and evaluated data files, 
• vendor specifications, 
• certificates and other reports, and 
• prior experience including previous measurement data.  
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Describing and reporting these contributions separately is good practice, although when evaluating the 
TMU on an individual item, they are combined without distinction (i.e., they are treated on the same 
probabilistic footing as Type A contributions). To do this, Type B uncertainties must be associated with 
an assumed probability density function (PDF). Therefore, for example, suppose the temperature 
coefficient of an instrument from type test data is provided by the manufacturer. The manufacturer may 
have used statistical methods, but this instrument was not part of that study, although it is assumed to be 
typical of the instruments that were. Assume that the manufacturer’s guidance is adopted and made use of 
in all assays. The value does not change, but it is not known perfectly. The manufacturer’s range of values 
is assumed to apply to the instrument, and a Type B uncertainty is added to the TMU. In doing so, the 
state of belief might be represented as a rectangular distribution or as a normal distribution to interpret the 
adopted variance and to develop CIs accordingly. This effect can be seen in the earlier description of how 
to estimate the combined standard uncertainty. In general, variances can be added, but when the 
underlying distributions are not all normal, then CIs will not necessarily correspond to those of a standard 
Gaussian PDF. Figure 3 shows a normalized Gaussian distribution function for various values of μ and σ.  

The interpretation of 
measurement results 
is inherently 
probabilistic. 
Statistical methods 
and reasoning 
therefore underpin 
measurement science 
and UQ, even though 
UQ is neither a 
wholly mathematical 
nor wholly 
prescriptive 
undertaking.  

The remaining 
sections of this 
chapter review key 
statistical concepts. 
Before moving on, 
take a moment to 
think of examples from your own experience. 

2. DESCRIPTIVE STATISTICS 

When an item is measured repeatedly (under the same conditions, which we usually take to mean in close 
succession) or when an entire experiment is replicated (using different hardware, different operators, etc.), 
often a spread of results is observed. However, there will also usually be a clear single clustering of 
results (unimodal) with the chance (relative frequency) of extreme values that fall steeply the further 
away the value is from the main group.  

Even though there is some spread, the measurement results can be concisely summarized using just a few 
numbers without making any assumptions about the shape of the underlying or parent frequency or the 
probability distribution (i.e., nonparametrically). Describing the results using just a couple of numbers is a 
considerable simplification compared to having to use the full list of results. Important sample properties 
can be described using statistics. A sample statistic is just the name given to both the value and to the 

 
Figure 3. Examples of a normalized Gaussian PDF for various values of μ and σ. 



 

7 

function used to calculate it from the set of data, subject to some mathematical formalities—such as the 
form of the function does not depend on the particular sample. For example, summary statistics concisely 
express what the sample implies about the underlying population (which is usually too big to know fully) 
without the need to assume an underlying mathematical model. This is the nonparametric approach.  

In contrast, a parametric approach involves interpreting the data within an underlying mathematical 
model, which is described by model parameters. Whether a model is appropriate should be checked 
before relying on it. The observed sample data is the only direct connection to reality. If good care was 
taken to collect good data and disagreement exists between the model and the data, then the model is 
possibly naïve.  

The main things to quantify for a sample are known as LDPOT: 

• Location—the position of the data on a scale, 
• Dispersion—a simple measure of how good the number is, 
• Probability distribution function—a detailed description of all the possible outcomes, 
• Outliers—the data set consistent with the model, and 
• Trends—aspects measured by time, item category, operator, and so on that could confound 

interpretation. 

3. MEASURE OF LOCATION 

The mode, median, and range are used to describe the general location (with suitable units). In 
measurement science, the measure of location is the mean. This is also commonly referred to as a 
measure of the central tendency of the data.  

Consider a list of n values of an independent random variable, X, the sample mean, 𝑥̅𝑥, is calculated as 
follows (the uppercase X denotes a random variable; the lowercase x denotes a realized value of X): 

 𝑥̅𝑥 =
1
𝑛𝑛
∙� 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
. (1) 

Typically, the average is the best estimate (has the smallest average squared error) of the mean of the 
underlying population distribution. Every value is treated on the same footing and 𝑛𝑛 ∙ 𝑥̅𝑥 is the total amount 
“of stuff,” as is to be expected. As 𝑛𝑛 → ∞, the computed value 𝑥̅𝑥 tends to a constant, the mean of the 
underlying population distribution.1  

4. MEASURE OF DISPERSION 

The sample variance is the usual mathematical way to measure the spread, variability, or dispersion of 
the sample. The sample variance, s2, is defined as follows. 

 𝑠𝑠2 =
1

(𝑛𝑛 − 1) ∙�
(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2

𝑛𝑛

𝑖𝑖=1
. (1) 

The factor 1
(𝑛𝑛−1) makes 𝑠𝑠2 an unbiased estimator of the population variance, which means that in repeated 

samples of size n, the average value of 𝑠𝑠2 = 𝜎𝜎�2 (the “hat” denotes an estimator) is the true population 
 

1 As an aside, the field of mathematical statistics distinguishes among several types of convergence, such as strong 
or weak convergence; such distinctions will not be needed here. 
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variance 𝜎𝜎2. It can also be shown that 𝑠𝑠2 is the minimum variance unbiased estimator, which from a 
practical standpoint, means that it is efficient at approaching the population value. Again, as 𝑛𝑛 → ∞, 
intuitively it can be seen that 𝑠𝑠2 converges to a constant value characteristic of the underlying complete 
population.  

The sample SD is called 𝑠𝑠 (= +√𝑠𝑠2 ≥ 0).  

The sample standard error is 𝑠𝑠𝑠𝑠 = 𝑠𝑠 √𝑛𝑛⁄ .  

The term standard error was originally defined by the British statistician George Udny Yule (1871–1951), 
who laid the origins for his work in an 1899 paper on the causes of pauperism in England (Yule 1899). 
See An Introduction to the Theory of Statistics (1911) to gain insight into how statistical theory was 
approached at that time. 

Standard error is important because it is a measure of the random error in a sample statistic, such as a 
mean. Such statements make sense because sample statistics behave randomly similar to the way 
individual measurements do. Whereas the sample SD is a measure of the dispersion of an individual 
repeat value, the standard error of the mean 𝑠𝑠𝑠𝑠 = 𝑠𝑠 √𝑛𝑛⁄  is a measure of the dispersion on the sample mean 
of the reported estimate of the measurand. A simple and powerful fact is that the variability of the sample 
mean across hypothetical or real replicates of obtaining a sample of size 𝑛𝑛 can be predicted quite well by 
the sample 𝑠𝑠𝑠𝑠. 

As discussed earlier, a pivotal quantity, or pivot, is a random variable defined by a function of (sample) 
observations and unobservable (population) parameters with the property that its probability distribution 
function does not depend on the unknown (population) parameters. We now introduce the pivotal 
quantity  

 𝑡𝑡 = �
𝑥̅𝑥 − 𝜇𝜇
𝑠𝑠 √𝑛𝑛⁄

�, (2) 

which, for a normal population, is distributed with a student’s t-distribution with 𝜈𝜈 = (𝑛𝑛 − 1) degrees of 
freedom (df). This fact allows CIs to be placed around 𝑥̅𝑥, having a given probability of containing the true 
but unknown value of 𝜇𝜇, the mean value of the underlying population that is being estimated. Notably, 
however, this is important when adopting results stemming from any parametric model that the conditions 
under which the mathematical model applies are appropriate for the given data set. This can often be 
difficult to do, and so may often just be a guess.  

In inferential measurement science, what is reported as a form of shorthand, 𝑥̅𝑥, is the best estimate result 
of the measurement and 𝑠𝑠 √𝑛𝑛⁄  as the optimal statement of the associated measurement uncertainty of the 
sample mean statistic. Extra information, such as the number of df, may be needed by a user of the 
reported values, �𝑥̅𝑥 ± 𝑠𝑠 √𝑛𝑛⁄ �, to properly interpret what it means in a way that is fit for their intended 
purpose.  

Descriptive statistics describe the data. Inferential statistics make inferences or predictions from the 
data. This includes estimating parameters for the population, which is a generalization from the sample, 
and hypothesis testing. 

This presentational form for (𝑥̅𝑥 ± 𝑠𝑠𝑠𝑠) must be treated carefully, especially when results are reported with 
expanded standard uncertainties. CIs are revisited in the following section after discussion of the Central 
Limit Theorem. Often, a normal distribution can be used to describe the central region of the probability 
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distribution of the measurement outcome, and a standard uncertainty value, u, is derived such that user-
specified confidence exists that the true value will be within ±𝑢𝑢 of the measured result.  

The relative standard error, 𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑠𝑠 √𝑛𝑛⁄
𝑥̅𝑥

, can be quoted either as a fraction or as a percentage. Beware! 
Sometimes the context and traditional relative SD may be used to describe the same thing. For a 
population, 𝛿𝛿 = 𝜎𝜎 𝜇𝜇⁄  is referred to as coefficient of variation, although its use in NDA is not widespread.  

Example: Suppose a sample of size n=3 comprises the numbers 1, 2, 3 with units of kg. The principal 
sample statistics are as shown in Table 2. 

Table 2. Sample statistics. 

Index, i 𝒙𝒙𝒊𝒊, kg 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
= 𝒙𝒙𝒊𝒊 − 𝒙𝒙�,𝒌𝒌𝒌𝒌 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝟐𝟐, kg2 

1 1 -1 1 
2 2 0 0 
3 3 1 1 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥̅𝑥 =
1 + 2 + 3

3
= 2.00 kg. 

Notably, the sum of deviations about the sample mean is zero, as it should be. (Exercise: Starting with 
(17.6), show that the sum of the deviations about the sample mean by definition is equal to zero.) The 
mean is intuitively gratifying because it is easy to appreciate. For example, potatoes to make a stew are 
sold by weight, not by piece. For making a stew, no difference exists between purchasing three average 
potatoes of 2 kg each or a sampling of three potatoes weighing 1, 2, and 3 kg at the grocery store.  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 𝑠𝑠2 =
𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛 − 1
=

2
2

= 1.00 kg2. 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛, 𝑠𝑠 = +�𝑠𝑠2 = 1.00 kg. 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑠𝑠𝑠𝑠 =
𝑠𝑠
√𝑛𝑛

=
1
√3

≈ 0.58 kg. 

Other defensible ways to estimate the dispersion of the result exist, given the limited experimental data.  

The premise of the bootstrap method is that each of the three results is equally likely. Thus, data sets can 
be constructed from the original data purely for the purpose of estimating variability through the process 
of sampling with replacement. The first of the three draws can be 1, 2, or 3, the second of the three draws 
can be 1, 2, or 3, and so on. This gives 27 (33) possibilities, and the SD of the mean for each of the 27 
cases (which is 0.48) provides an estimate of the standard error of the original data set. For larger data 
sets, such as 𝑛𝑛 = 100 instead of 𝑛𝑛 = 3, far too many possibilities exist to enumerate, so one simply 
computes a reasonable number such as 1,000 bootstrap samples of size 100. The true variance is unknown 
in this case, so determining whether 0.58 is a better standard error than 0.48 is not possible. 

The jackknife technique is a scheme based on rejecting each data in turn (Miller 1974). 
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In reporting numerical 
values, the dilemma 
arises of knowing how 
many significant figures 
to use so that rounding 
errors (in either the mean 
or SD or both) do not 
introduce significant 
errors when the results 
are subsequently used in 
other calculations (for 
instance, in a weighted 
mean of values).This is 
especially true when the 
uncertainty in the SD can 
be large. Implying 
greater confidence in the 
results than can be 
justified would be bad 
practice. However, as 
noted earlier, reporting the SD to at least two digits and using it to define the least significant figures of 
the measurand are recommended. For example, (9.81±0.41) and (10.08±0.67) abide by this 
recommendation. Dean 2008 provides arguments for supporting this practice (Dean 2008). To summarize, 
usually giving the uncertainty to two significant figures and the results reported to match resolution are 
recommended, for example, (1.953 ± 0.028) kg, which is also commonly written as 1.953(28) kg. 

Of course, if these results had been obtained from successive repeated measurements, the difference in the 
estimates in the SD might be attributable to chance alone. Taking a simple average rather than a weighted 
average is likely to be the more appropriate thing to do. In other words, some judgment may still be 
needed to interpret the data.  

5. CENTRAL LIMIT THEOREM  

In a scheme that is cleverly known as “the method of moments,” the sample mean and sample variance 
are statistics used as estimates for the corresponding properties of the underlying population of events. 
Consequently, 𝑥̅𝑥 and 𝑠𝑠 are themselves random variables and can also be sampled and studied. Suppose the 
underlying population of possible values has a mean and variance of 𝜇𝜇𝑝𝑝 and 𝜎𝜎𝑝𝑝2, respectively. Then, one 
form of the Central Limit Theorem states that if many samples of size 𝑛𝑛 are obtained from a much 
larger population, 𝑛𝑛𝑝𝑝 ≫ 𝑛𝑛, then the expectation value (long-term average) of the sample mean and the 
expectation value of sample variance are given by 

 𝜇𝜇𝑥̅𝑥 = 𝜇𝜇𝑝𝑝, (1) 

and 

 𝜎𝜎𝑥̅𝑥 =
𝜎𝜎𝑝𝑝
√𝑛𝑛

, (2) 

where 𝜎𝜎𝑥̅𝑥 is called the standard error of the sample mean and describes how the variation in the sample 
mean is less than the variation in individual values. Further, for large 𝑛𝑛 (≳ 25),  

 EXAMPLE 

Fabrication techniques for a 16 × 16 pixelated array detector are being developed. A 
batch (sample size, 𝑛𝑛) of 256 sensors was tested and 17 were found to be defective. 
The estimated probability of a defective element is therefore 𝑝̂𝑝 = 17

256
≈ 0.0664. The 

theoretical SD of this estimate is 𝑠𝑠𝑠𝑠(𝑝̂𝑝) = 𝜎𝜎
√𝑛𝑛

= �𝑝𝑝(1−𝑝𝑝)
𝑛𝑛

, but because 𝑝𝑝 is unknown, 

the expression is evaluated using the experimentally estimated (sample) value 𝑝̂𝑝. 
Thus: 

𝑠𝑠𝑠𝑠�(𝑝̂𝑝) = �𝑝̂𝑝(1 − 𝑝̂𝑝)
𝑛𝑛

= �
17

256 ∙
239
256

256
≈ 0.0156. 

The estimated proportion of defective sensors for this production process based on 
this one sample is therefore (6.6±1.6)%, where the uncertainty indicates the 
approximate 68% CI (this would conventionally be called the margin of error in the 
context of a political poll intended to estimate a simple proportion statistic). The 
quantiles of the pivotal t statistic should provide a better-quality CI. However, in 
this case, n = 256 is so large that the quantiles of the t are essentially the same as the 
quantiles of the Gaussian. CIs for ratios is a separate topic in itself (Agresti 1998). 
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 𝑥̅𝑥 ∻ 𝑁𝑁 �𝜇𝜇𝑝𝑝,
𝜎𝜎𝑝𝑝2

𝑛𝑛
�, (3) 

which should be interpreted as the sample mean is approximately distributed as a normal (i.e., Gaussian 
or Laplace-Gauss) distribution (PDF) with mean 𝜇𝜇𝑝𝑝 and variance 𝜎𝜎𝑝𝑝

2

𝑛𝑛
.  

The Gaussian distribution has a characteristic symmetric bell shape with the following mathematical 
form, which proves to be especially convenient to work with shown mathematically: 

 𝑔𝑔(𝑥𝑥 ∣ 𝜇𝜇,𝜎𝜎2 ) ∙ 𝑑𝑑𝑑𝑑 =
1
√𝜋𝜋

∙ 𝑒𝑒
−�𝑥𝑥−𝜇𝜇

√2𝜎𝜎
�
2

∙
𝑑𝑑𝑑𝑑
√2𝜎𝜎

, (4) 

where 𝑔𝑔(𝑥𝑥 ∣ 𝜇𝜇,𝜎𝜎2 ) ∙ 𝑑𝑑𝑑𝑑 is approximately the probability that the value of the random variable will be in 
the incremental interval of width 𝑑𝑑𝑑𝑑 about 𝑥𝑥. The exact probability is the integral of 𝑔𝑔(𝑥𝑥 ∣ 𝜇𝜇,𝜎𝜎2 ) from 
𝑥𝑥 −  𝑑𝑑𝑑𝑑 to 𝑥𝑥 +  𝑑𝑑𝑑𝑑. See Figure 3 for a graphic representation.  

Note that 𝑔𝑔(𝑥𝑥) is a 
two-parameter function 
of a real continuous 
variable. The mean is 𝜇𝜇 
(−∞ < 𝜇𝜇 < ∞), and the 
variance is 𝜎𝜎2 (𝜎𝜎2 > 0). 
The integral under the 
curve is unity because 
the distribution is a true 
normalized PDF. The 
fractional area under the 
curve between two 
boundaries, Pr(𝑎𝑎 ≤ 𝑥𝑥 ≤
𝑏𝑏) = ∫ 𝑔𝑔(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎 , is the 
probability that the value will take on a value between the boundaries.  

In another Central Limit Theorem example, the sum of random variables with finite variance leads to the 
emergence of a normal distribution. For making measurements, many sources of influence cannot be 
controlled, fluttering on a short timescale from one measurement to the next and contributing to the 
inherent variation in the measurement result. Therefore, treating measurement variability is quite 
common, assuming that a normal distribution adequately describes at least the central region (>95%) of 
outcomes.  

6. NUCLEAR COUNTING EXPERIMENTS 

Imagine that a number, 𝑛𝑛, of nuclei each has a fixed probability, 𝑝𝑝 > 0, of decaying and being detected in 
a time period, 𝑡𝑡. Let the probability of detection 𝑝𝑝 be called the probability of success and the probability 
of not being detected, 𝑞𝑞 = (1 − 𝑝𝑝), be called the probability of failure. With 𝑛𝑛 fixed and 𝑝𝑝 fixed (each 
nucleus behaves independently) the complete probabilistic summary of possible outcomes is described by 
the discrete binomial distribution, 𝑏𝑏(𝑘𝑘 ∣ 𝑛𝑛,𝑝𝑝), 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛, stemming from the n-independent Bernoulli 
trials. Thus, the following can be written: 

 PRACTICE 

Noise that Can Cause Measurement Results to Scatter 
1. What are a few examples of noise that can cause results to scatter? 

2. Generate a sample with each value being synthesized by adding 
independent random variables drawn from different distributions. For 
example, toss a coin 20 times. Assign 1 to heads and 0 to tails and record 
the totals for all 20 tosses. A histogram would show a somewhat 
bell-shaped spread even though the “things” that are summed came from 
non-normal distributions. 
This problem is treated similarly in the discussion on the binomial 
distribution for nuclear counting. The binomial distribution also describes 
the number of defectives in the example above involving fabrication 
techniques for a 16 × 16 pixelated array detector. 



 

12 

 (𝑝𝑝 + 𝑞𝑞)𝑛𝑛 = 1 = �
𝑛𝑛!

𝑘𝑘! (𝑛𝑛 − 𝑘𝑘)!

𝑛𝑛

𝑘𝑘=0
𝑝𝑝𝑘𝑘𝑞𝑞𝑛𝑛−𝑘𝑘 = � 𝑏𝑏(𝑘𝑘 ∣ 𝑛𝑛, 𝑝𝑝)

𝑛𝑛

𝑘𝑘=0
, 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 (1) 

There are various notations for the binomial coefficients �𝑛𝑛𝑘𝑘� = 𝐶𝐶𝑘𝑘𝑛𝑛 = 𝑛𝑛!
𝑘𝑘!(𝑛𝑛−𝑘𝑘)!

, which is to be read as “n 
choose k,” and gives the number of combinations or choices of k successes from n attempts with the order 
of the arrangement being unimportant. The values of the binomial coefficients are familiar from Pascal’s 
triangle [Exercise: write out Pascal’s triangle now]. The form of the binomial distribution and how to 
generalize it can be visualized by thinking about a coin-tossing experiment. The outcomes of a single coin 
toss are heads or tails (H or T, respectively). The outcomes of two coin tosses (H+T)(H+T) are HH, HT, 
TH, TT, which can be mathematically codified as 

“1 ∙ 𝐻𝐻2 ∙ 𝑇𝑇0 + 2 ∙ 𝐻𝐻1 ∙ 𝑇𝑇1 + 1 ∙ 𝐻𝐻0𝑇𝑇2,” 

and so on by repeated multiplication and collection of combinations. In this case, the power of H gives the 
number of heads, and the coefficient gives the frequency. Setting H = T= 1/2 returns the probability (or 
alternatively one can normalize the outcomes) [Exercise: work through this example now and extend to 
three coin tosses. Note: There are some good videos on-line of the quincunx machine that also illustrates 
the point.] The mean and variance of the binomial distribution are 𝑛𝑛 ∙ 𝑝𝑝 and 𝑛𝑛 ∙ 𝑝𝑝 ∙ (1 − 𝑝𝑝), respectively. 
Notably, as 𝑝𝑝 → 0, the numerical values converge.  

 THE BINOMIAL, POISSON, AND GAUSSIAN DISTRIBUTIONS 

The probability that off-site electrical power will be lost at a nuclear facility is estimated to be constant at 
0.43/year. Over the 40-year operational life of the facility, what is the probability that off-site power will be 
lost at least once?  
Hint: Work with the complementary event. 
Answer: The probability that power will be lost one or more times after 40 trials is being sought. This is equal 
one minus the probability that power will never be lost and is given by 

(1 − 𝑝𝑝(0)) = 1 − (1 − 0.043)40 ≈  0.172. 
Under almost all conditions of practical interest, the binomial distribution can be mathematically recast by 
letting 𝑛𝑛 → ∞, 𝑝𝑝 → 0, 𝜇𝜇 = 𝑛𝑛 ∙ 𝑝𝑝 = constant, and 𝜎𝜎2 = 𝑛𝑛 ∙ 𝑝𝑝 ∙ (1 − 𝑝𝑝) → 𝜇𝜇, resulting in the Poisson 
distribution. The Poisson distribution can be derived as a basic distribution in its own right (e.g., to describe the 
sporadic annual number of deaths in the Prussian cavalry from horse kicks). For example, 

𝑝𝑝(𝑘𝑘 ∣∣ 𝜇𝜇 ) =
𝜇𝜇𝑘𝑘 ∙ 𝑒𝑒−𝜇𝜇

𝑘𝑘!
, 0 ≥ 𝑘𝑘(𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) ≤ ∞, 

which is much simpler to deal with than the binomial. Note that the Poisson distribution is discrete and is fully 
specified by only a single parameter, the mean, 𝜇𝜇 a real number > 0, and 𝜎𝜎2 = 𝜇𝜇. Experimentally, this is an 
extremely important point because it means that from the result of a single nuclear counting experiment 
(“count”), one can obtain (through a mathematical process known as inversion which will not be covered here) 
both an estimate of the mean (𝜇̂𝜇 = 𝑁𝑁 + 1) and from it also of variance (𝜎𝜎�2 = 𝜇̂𝜇). Hence, one can make a 
quantitative estimate of the “counting statistics” reliability of the result. The Poisson distribution is the 
fundamental distribution of nuclear counting. When 𝜇𝜇 is small, the distribution is highly skewed toward small 
values of 𝑘𝑘. However, as 𝜇𝜇 becomes larger, the distribution becomes more symmetrical and gradually morphs 
into the shape of a Gaussian function 𝑔𝑔(𝑘𝑘 ∣ 𝜇𝜇, 𝜇𝜇 ) that is 

lim
𝜇𝜇→∞

�
𝜇𝜇𝑘𝑘 ∙ 𝑒𝑒−𝜇𝜇

𝑘𝑘!
� ≈ �

1
√𝜋𝜋

∙ 𝑒𝑒
−�𝑥𝑥−𝜇𝜇

�2𝜇𝜇
�
2

∙
𝑑𝑑𝑑𝑑

�2𝜇𝜇
≈

𝑘𝑘+0.5

𝑘𝑘−0.5
𝑔𝑔(𝑘𝑘 ∣ 𝜇𝜇, 𝜇𝜇 ) ∙ 1 =

𝑒𝑒
−�𝑘𝑘−𝜇𝜇

�2𝜇𝜇
�
2

�2𝜋𝜋𝜋𝜋
, 𝑘𝑘(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) ≥ 0. 
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For describing the central part (e.g., 95%) of the discrete Poisson distribution in nuclear counting experiments, 
the Gaussian approximation becomes “reasonably good” for 𝜇𝜇 ≳ 15, with some flexibility, depending on the 
application.  

 

Suppose 1 g of 235U exists that is ~ 1
235.04 g/mol

∙ 6.0221 × 1023atom/mol ~2.56 × 1021 atoms. The 
half-life of 235U is 703.8(5) × 106 years (Chadwick et al. 2011), which corresponds to a probability for a 
given nucleus to decay per s [i.e., 𝜆𝜆 = ln(2) /(2.22 × 1016 s)] of approximately 3.121(2) × 10−17. To 
illustrate the concept, suppose the probability of emitting a 185.7 keV photon is 0.570(6), the probability 
of the photon escaping the object is 0.6, the solid angle probability of striking a detector is 0.045, and the 
probability that the photon will fall into the set energy-deposition region of interest is 0.25. For a 1,000 s 
observation period, the probability of a successful detection is of the order of 1.2 × 10−16. This verifies 
that the approximation of small probability is confirmed. Therefore, the variance is numerically equal to 
the mean, and the binomial distribution may be replaced by the Poisson distribution for nuclear counting 
examples.  

Consequently, almost all NDA assessments of detection limits, CIs, and so on make use of the Gaussian 
approximation. This Gaussian approximation results in considerable technical simplification in combining 
and reporting measurement uncertainties but is not always a wholly satisfactory approach. However, for 
the rest of our discussion we shall assume that it is!  

To illustrate using the Gaussian approximation in nuclear counting experiments, suppose 1,618 events are 
recorded over a 60 s interval in a region of interest—the pulse height spectrum. The best estimate of the 
count rate is 1,618 60~26.97⁄  counts per sec (cps). The associated SD is √1618 60~0.67⁄  cps, and one 
would traditionally report the result as (26.97 ± 0.67) cps with a statement to the effect that the 
uncertainty is counting precision at the 1σ level. This is equivalent to specifying that the coverage factor 
is unity (“k = 1”). The assumption that the distribution is being approximated by a normal distribution 
(with infinite df) derived from integer values is usually implicit from the context and common use. 

Suppose that no events (𝑁𝑁 = 0) are observed in a given Poisson experiment. Then, is it reasonable to 
assign an expected mean of zero with zero variance, which implies perfect knowledge? However, 
intuitively, this seems wrong. From a single observation of random behavior (it should be obvious) that 
full and complete knowledge cannot be attained. There are technical arguments in general (related to 
inversion on maximum likelihood with a flat prior) for using mean = variance = (𝑁𝑁 + 1). This 
discussion has avoided the complication of small numbers by requiring 𝑁𝑁 to be sufficiently greater than 
zero.  

7. CONFIDENCE INTERVALS 

The most complete way to communicate the confidence in a measurement is to provide an estimate of the 
complete probability distribution function (PDF) along with the estimated value. In cases where the PDF 
can be approximated by a normal distribution one, common convention is to report the value along with 
an error bar of plus and minus one SD of the normal distribution. Recall that for a normal distribution, the 
mean and SD fully define the PDF. Whenever data are presented in this style, it is important to clearly 
state what convention (e.g., plus and minus one standard error) and other assumptions (e.g., normality) 
are being made and what other information is needed (e.g., sample size or effective degrees of freedom 
(df)) to interpret the uncertainty statement. The number of degrees of freedom is an important concept 
that will not be explored in detail here. But it is related to the fact that if one calculates the mean from a 
sample then there is only freedom to write (n-1) results because given these and the mean the nth result 
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can be calculated. Thus, factors of (n-p), where p is the number of derived parameters, often appear in 
statistical formulae.   

The standard error calculated from a sample data set is itself a statistic or estimator, so it can legitimately 
be asked what is the “uncertainty in the uncertainty.” This can be framed in a very general way, but here 
only the result for the normal distribution is quoted in a somewhat stylized way: 

 𝑥̅𝑥 ±
𝑠𝑠
√𝑛𝑛

∙ �1 ±
1

�2(𝑛𝑛 − 1)
�. (1) 

We see that the fractional uncertainty in the uncertainty is of the order of 1
�2(𝑛𝑛−1)

. It takes a sample of size 

𝑛𝑛 = 51 before this factor reduces to 10%. (For a sample of 𝑛𝑛 = 6, it is about 32%, a magnitude that in a 
different context could be thought of as a detection limit.) Although one is not usually interested in the 
value of 𝑠𝑠𝑠𝑠 = 𝑠𝑠 √𝑛𝑛⁄  per se, only in how it helps express confidence in the estimated location result, this 
serves as a reminder that statistical estimates are not exact. Sometimes statistical estimates may be rather 
crude. The variance depends on the square of deviations, so large deviations contribute more. As a 
consequence, the variance will then scatter more, and so it requires more data points to locate it precisely. 

Given the sample’s statistics 𝑥̅𝑥 and 𝑠𝑠 √𝑛𝑛⁄ , it is only natural to ask how confident one is in the true but 
unknown population mean, 𝜇𝜇, that lies within some interval about the sample mean 𝑥̅𝑥. Recall that for a 
normal distribution, the pivotal quantity 𝑡𝑡 = � 𝑥̅𝑥−𝜇𝜇

𝑠𝑠 √𝑛𝑛⁄ � is distributed according to a student t-distribution 
with (𝑛𝑛 − 1) df (here occurs a slight abuse of notation to use the lowercase “t,” because lower case 
denotes a realized value and not a random variable; the right-hand side terms are lower case.) From this 
example, it can be shown that the 100 ∙ (1 − 𝛼𝛼)% two-sided CI for 𝜇𝜇 can be expressed as 

 𝜇𝜇 = �𝑥̅𝑥 ± 𝑡𝑡𝑛𝑛−1,𝛼𝛼 2⁄ ∙
𝑠𝑠
√𝑛𝑛

�. (2) 

Values of 𝑡𝑡𝑛𝑛−1,𝛼𝛼 2⁄ , the coverage factors for students t-distribution (“t-distribution table of two-sided 
critical t values”), can be generated in Microsoft Excel using the function call 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝛼𝛼, 𝑛𝑛 − 1).  

For example, suppose a sample of six data points exists, and a 95% CI is desired (which is a common but 
arbitrary choice).  

In this case, 𝜈𝜈 = (𝑛𝑛 − 1) = 5, 𝛼𝛼 = 0.05, and the expanded uncertainty becomes ≈ 2.57 ∙ 𝑠𝑠
√𝑛𝑛

. In 
contrast, in the limit (𝑛𝑛 − 1) → ∞, and the sample become truly representative of a normal, the multiplier 
tends to ≈ 1.96. The 95% confidence level is an arbitrary but commonly encountered choice. At this 
level, the probability (in a frequentist sense over many such CIs) of the true value falling outside the 
range is still 1 20⁄ .  

In other words, the actual meaning of the CI is somewhat different from the usual (mis)interpretation 
given above. In the usual interpretation, a CI of 95% is thought of as containing the true value with a 
probability of 95%. However, statistically what it means is that if the same CI construction method were 
applied many times, then 95% of the experimental CIs would include the true value. This is an important 
distinction when CIs are estimated through simulation, for example, by Monte Carlo sampling of the 
physical behaviors of a system. Strictly speaking, from a Bayesian perspective, one does not interpret a 
frequentist CI conditional on the data. Rather, a CI construction procedure is characterized by the 
coverage probability (whether the true values lies in the CI) over many similarly constructed intervals. 
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8. CONFIDENCE INTERVALS FOR A SINGLE POISSON OBSERVATION 

For a single observation (sample size of 𝑛𝑛 = 1) for which the result is k counts collected from an assumed 
Poisson distribution with mean μ, an “exact” CI for μ with a confidence level (1-α) is given as 

 
1
2
𝐼𝐼𝐼𝐼𝐼𝐼_𝜒𝜒2(𝛼𝛼 2⁄ ; 2𝑘𝑘) ≥ 𝜇𝜇 ≤

1
2
𝐼𝐼𝐼𝐼𝑣𝑣𝜒𝜒2(1 − 𝛼𝛼 2⁄ ; 2𝑘𝑘 + 2), (1) 

where 𝐼𝐼𝐼𝐼𝐼𝐼𝜒𝜒2(𝑥𝑥, 𝜈𝜈) is the inverse of the left-tailed probability of the chi-squared distribution. 

Because the number of counts must be an integer, the conservative approach is to round the lower limit 
values down and to round the upper limit values up. 

The chi-squared distribution, 𝜒𝜒2(𝑥𝑥, 𝜈𝜈), with 𝜈𝜈 df for the variable 𝑥𝑥, has the form 

 𝜒𝜒2(𝑥𝑥, 𝜈𝜈) =
1

2𝜈𝜈 2⁄ ∙ 𝛤𝛤(𝜈𝜈 2⁄ ) ∙ 𝑥𝑥
𝜈𝜈 2⁄ −1 ∙ 𝑒𝑒−𝑥𝑥 2⁄ , (2) 

where 𝑥𝑥 is a real positive number, 𝜈𝜈 is a positive integer greater than or equal to one, and 𝛤𝛤(𝑧𝑧) is the 
gamma (factorial) function defined by Euler’s Integral (Abramowitz 1968) [Note that, for 𝑧𝑧 = 𝑚𝑚, and 
integer value, the form needed for this problem is 𝛤𝛤(𝑚𝑚) = (𝑚𝑚 − 1)!]. 

Although this result is well known in the statistical community, these confidence limits are rarely applied 
to nuclear counting in practice. For example, they are not applied to a curve-fitting algorithms used in 
gamma-ray spectroscopy. Instead, the normal approximation is typically invoked. The practical benefit of 
this simplification is even greater when the difference of two count distributions is considered (signal 
equals gross counts minus background). Formally, the difference of two independent Poisson random 
variables has a Skellam distribution. 

9. TECHNIQUE SELECTION AND INSTRUMENT DESIGN 

Several complementary methods and multiple physical realizations may be available to measure items of 
a given type and character. An appropriate selection of method and instrument that balances the 
conflicting objectives requires critical thinking and should involve the collective experience of the whole 
team. 

10. CALIBRATION 

Calibration is the procedure to establish the causal relationship between a measurand, the predictor 
variables, and other quantities (e.g., mass-deflection, energy-channel, and volume-level). In the simplest 
case, calibration establishes proportionality under controlled conditions. Thus, calibration can be 
established from the response to known reference items or standards or it can be established through 
comparison against an accepted standard instrument.  

The items used for calibration must be traceable to internationally or nationally recognized standards 
through an unbroken chain of comparisons. International and national standards are the top tier of 
standards, but they are few and must be diligently maintained. As one progresses down the hierarchy of 
standards to the primary, secondary, and working levels, the uncertainty generally expands as the 
comparison uncertainty incurred at each stage contributes to the total uncertainty. In general, however, the 
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accuracy of the calibration standards should still be small (1/3 is a common rule of thumb) compared to 
the overall calibration uncertainty goal.  

Calibration requires both careful planning and careful execution by trained and experienced personnel 
who understand the measurement instrument, the basis of the assay technique, and what has to be done to 
obtain a calibration that meets the data quality objectives and why, including the consequences of taking 
liberties with the procedure. Known items that represent the unknowns to be assayed are commonly used. 
Special attention to blanks (background) and interferences is required. The following practices are crucial 
to establishing and maintaining a credible calibration free from unidentified systematic uncertainty that 
does not show up in repeat measurements on a reference item: 

• Cross calibrations, 
• Participation in interlaboratory comparisons, 
• Round-robin exercises, 
• A robust quality control program, and 
• Regular performance demonstration measurements.  

A written calibration procedure usually includes sections covering the following:  

• Purpose, scope, definitions, and references; 
• Attachments, equipment, and materials required; 
• Safety, prerequisite conditions, test procedure; and 
• Recording templates, acceptance criteria, approvals.  

The frequency and accuracy objectives of a calibration depend on the importance of the data being 
generated and the consequence an error. Measurement control is also used to maintain tolerances and 
provide ongoing estimates of error SDs. Individual sensors as well as system-level performance can be 
subjected to calibration and measurement control. Initial factory calibrations are often replaced in whole 
or in part by field calibrations performed in situ to correctly incorporate the conditions of actual assays. 

The calibration procedure may often be witnessed by independent experts to ensure honest execution, 
attention to detail, and integrity of reporting. Excellent documentation is crucial because, in addition to 
conveying quality to the client, it is the only evidence that calibration was done as intended. The 
calibration report also provides a way to record pertinent observations or changes occurring during field 
work.  

The simplest calibration is that for a proportionate (linear through the origin), physics-based response 
function performed using a single calibration item. An example is when the Enrichment Meter Principle 
(EMP) is used to determine the attribute 235U enrichment (235U:totU atom %) of a homogeneous compound 
under fixed geometry using a collimated high-resolution gamma-ray spectrometer. In this case, the net 
full-energy peak area counting rate 𝐶𝐶 of the combined 182.6 + 185.7 (both lines come directly from 235U) 
keV gamma-lines is obtained using a three region-of-interest algorithm, and the rate, 𝐶𝐶, varies in direct 
proportion to enrichment, 𝛼𝛼. Calibration usually occurs within the causal relationship (rather than the 
inverse) and so 

 𝐶𝐶 = 𝑝𝑝 ∙ 𝛼𝛼, (1) 

where 𝑝𝑝 is the calibration model parameter (constant of proportionality) with units, in this example, of 
𝑐𝑐𝑐𝑐𝑐𝑐/(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 %). With a single well-known calibration item with nominal value 𝛼𝛼𝑜𝑜 (e.g., mass 
spectrometry is far more accurate than the field application of the Enrichment Meter Principle when 
continuum, peaked background, rate, wall, and other corrections are considered), one can write 
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 𝑝𝑝 =
𝐶𝐶𝑜𝑜 ± 𝑢𝑢𝐶𝐶𝑜𝑜

𝛼𝛼𝑜𝑜
, (2) 

where the subscript refers to the calibration values, and 𝑢𝑢𝐶𝐶𝑜𝑜 is the estimated uncertainty in 𝐶𝐶𝑜𝑜, usually at 
the notional 68.26% confidence level (1σ-value for a normal distribution with an infinite number of df). A 
more conventional notation would be: 𝑝̂𝑝 = 𝐶𝐶𝑜𝑜

𝛼𝛼𝑜𝑜
 with an approximate 68% CI given by 𝑝̂𝑝 ± 𝑢𝑢𝐶𝐶𝑜𝑜

𝛼𝛼𝑜𝑜
. Multiple 

conventions and traditions are often encountered in applied measurement statistics and physical scientists 
often rely heavily on context to clarify meaning, so be prepared to encounter a variety of styles in the 
literature. 

In this special case, when an unknown item is measured, the assay value has the character of a direct 
relative determination. The expression for approximately 68% CI for 𝛼𝛼 is given, according to the method 
of Propagation of Variance (PoV) which we’ll describe in detail later, by (assuming 𝑢𝑢𝑐𝑐 is the estimated 
uncertainty in 𝐶𝐶) 

 𝛼𝛼 = �
𝐶𝐶
𝐶𝐶𝑜𝑜
� ∙ 𝛼𝛼𝑜𝑜 ± 𝛼𝛼 ∙ ��

𝑢𝑢𝐶𝐶
𝐶𝐶
�
2

+ �
𝑢𝑢𝐶𝐶𝑜𝑜
𝐶𝐶𝑜𝑜
�
2

, (3) 

where uncertainty in 𝛼𝛼𝑜𝑜 is being neglected for the purposes of this illustration. If any other corrections are 
made, the previous comment about notation applies. The assigned uncertainty becomes clear after the 
discussion of how to combine uncertainties. However, the fractional uncertainty on 𝐶𝐶𝑜𝑜 is required to be 
sufficiently small so that zero or negative values are not credible.  

Most calibrations are much more involved than this simple example because the measurement procedure 
involves many steps, the number of model parameters is larger, and more calibration items covering the 
full operational dynamic range are included. In addition to a slope, the response model may also require 
an intercept and nonlinear behavior (hysteresis is a special case because often a calibration is checked as 
calibration values increase and then decrease). A calibration is usually considered valid only between the 
lower and upper values of the calibration items used to avoid extrapolation. Items are included between 
these bounds to demonstrate smooth, predictable behavior or to establish some other interpolation scheme 
and associated tolerances.  

All measurements performed using a given instrument over a given calibration period are correlated 
through the common estimated calibration parameters. If the same calibration reference items are used 
each time, a longer-term correlation exists. In evaluating aggregate values, this correlation needs to be 
recognized and included in the UQ assessment by including the covariance uncertainty structure of 
individual results or by writing the overall measurement equation explicitly in terms of the predictor 
variables. This is discussed more as in Section 12, Combining Uncertainties. 

11. MEASUREMENT CONTROL 

To ensure that the measurement process is maintained within an acceptable tolerance (i.e., is within 
measurement control) the general methods of statistical process control first introduced by Walter A. 
Shewhart can be applied. The basic method monitors performance using control charts maintained 
through check standards that are regularly measured by the process. A word of caution here is that such 
checks do not capture item-specific biases but only monitor that repeatability variance is under control 
and stable. 
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Each attribute chosen for tracking will typically be charted for value, range, and SD using the so-called 
X-, R-, and S-charts. For radiation measurements, random error variance is often estimated by dividing 
the acquisition time into a sequence of shorter intervals that can be analyzed statistically. For other kinds 
of sensors, repeat measurements or a short run of measurements might be used to update the S-chart. 
Observations over an extended setting to work period establish the initial variability. These are the 
baseline data. Later, if fluctuations occur outside of what seems reasonable given this history, alerts can 
be issued. A typical criterion are the Western Electric rules (Western Electric 1956). The following 
articles by Brian Lanning are also clear and accessible (Lanning 1995, 1998).  

12. COMBINING UNCERTAINTIES 

The starting point is the measurement equation. The most common approach is to linearize the 
functional dependence on each of the predictor variables about their mean values and to use a result of 
applied statistics called propagation of variance (PoV).  

Recall when tractable, bootstrap and Monte Carlo sampling provide intuitive alternatives to estimate 
PDFs without having to know much about applied theoretical statistics. Monte Carlo sampling also allows 
discontinuous response functions (e.g., logic involving decision trees) to be easily studied.  

Before discussing the PoV, two basic idealized error models are introduced— the additive and 
multiplicative error models. However, in practice, a mix of measurement models is common.  

12.1 ADDITIVE ERROR MODEL 

The additive error model can be defined as 
 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑖𝑖 + 𝑏𝑏𝑖𝑖 , (1) 

where 𝑖𝑖 is the index of the datum, 𝑥𝑥𝑖𝑖 being the ith data point of a sample, 𝜀𝜀𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝜀𝜀2) is an independent 
random variable with an expectation value of zero but finite variance, and 𝑏𝑏𝑖𝑖 is an item-specific constant 
(deterministic) bias also commonly called the systematic error. Both 𝜀𝜀𝑖𝑖 and 𝑏𝑏𝑖𝑖 have the same units as 𝑥𝑥𝑡𝑡. 
Note on the average 𝑥̅𝑥𝑖𝑖 → 𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑖𝑖. The value of 𝜀𝜀𝑖𝑖 can take on any real value positive or negative, 
although large deviations from zero are rare (as governed by the variance 𝜎𝜎𝜀𝜀2). 

12.2 MULTIPLICATIVE OR PROPORTIONAL ERROR MODEL 

One form of the multiplicative error model can be defined as 
 

 𝑥𝑥𝑖𝑖 = "𝑒𝑒(𝛿𝛿𝑖𝑖+𝑐𝑐𝑖𝑖) ∙ 𝑥𝑥𝑡𝑡" ≈ (1 + 𝛿𝛿𝑖𝑖 + 𝑐𝑐𝑖𝑖) ∙ 𝑥𝑥𝑡𝑡 , (2) 

where 𝑥𝑥𝑖𝑖 is the ith item, small changes are assumed, 𝛿𝛿𝑖𝑖~𝑁𝑁�0,𝜎𝜎𝛿𝛿2� is an independent normal random 
variable, and 𝑐𝑐𝑖𝑖 is an item-specific constant (deterministic) bias or systematic factor. In this mode, both 𝛿𝛿𝑖𝑖 
and 𝑐𝑐𝑖𝑖 are dimensionless numbers, just simple multiplicative factors. Note that on average 𝑥̅𝑥𝑖𝑖 →
(1 + 𝑐𝑐𝑖𝑖) ∙ 𝑥𝑥𝑡𝑡. The natural definition of error in the multiplicative model is the ratio measured to true. 

The multiplicative model 
can be approximately 
transformed (provided 
that the total relative 
error SDs are approximately 10% or less) into a linear model in terms of transformed variables as follows: 
ln(𝑥𝑥𝑖𝑖) = ln (𝑥𝑥𝑡𝑡) + 𝛿𝛿𝑖𝑖 + 𝑐𝑐𝑖𝑖. The reason why we chose 𝑒𝑒(𝛿𝛿𝑖𝑖+𝑐𝑐𝑖𝑖) in defining the multiplicative model is now 

 PRACTICE 

Evaluate the variance in the measured value for these two models. 
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clear – it leads to a linear simplification when the natural logarithm is taken. A more general 
multiplicative error model, 𝑥𝑥𝑖𝑖 = 𝑒𝑒(𝛿𝛿𝑖𝑖+𝑐𝑐𝑖𝑖)𝑥𝑥𝑡𝑡

𝑑𝑑𝑖𝑖, also has a simple logarithm transform: ln(𝑥𝑥𝑖𝑖) = 𝑑𝑑𝑖𝑖ln (𝑥𝑥𝑡𝑡) +
𝛿𝛿𝑖𝑖 + 𝑐𝑐𝑖𝑖. It is always instructive to review data graphically and one way to identify whether the error model 
is additive or multiplicative in nature is to look at the calibration results 𝑥𝑥𝑖𝑖 𝑣𝑣𝑣𝑣. 𝑥𝑥𝑡𝑡 in lin-lin and ln-ln space. 
For the calibration data reference or accepted values take the place of 𝑥𝑥𝑡𝑡.  

12.3 PROPAGATION OF VARIANCE 

The method to combine uncertainty in the case of a well-behaved relationship is reviewed in this section. 
Consider the measurement equation 

 𝑦𝑦 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2), (3) 

which expresses mathematically that 𝑦𝑦 is a function of the two variables 𝑥𝑥1 and 𝑥𝑥2. The measurement 
equation is the mapping relationship between the observables and other information into the quantity (or 
quantities) of interest. In general, the algorithm can also involve logic that introduces discontinuous 
threads, but here simple smooth behavior is assumed. 

Over some small region about the point (𝑥̅𝑥1, 𝑥̅𝑥2), assume that one can linearize the relationship in the form 
of a first-order Taylor series approximation. That is, use this approximation: 

 𝑦𝑦 = 𝑓𝑓(𝑥̅𝑥1, 𝑥̅𝑥2) + �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

�
(𝑥̅𝑥1,𝑥̅𝑥2)

∙ (𝑥𝑥1 − 𝑥̅𝑥1) + �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

�
(𝑥̅𝑥1,𝑥̅𝑥2)

∙ (𝑥𝑥2 − 𝑥̅𝑥2), (4) 

where the subscript on the partial derivatives (gradients, slopes, or sensitivity) terms emphasizes that they 
are to be evaluated at the point (𝑥̅𝑥1, 𝑥̅𝑥2) where each of the variables is set to its estimated mean value.  

One can also estimate the partial derivatives numerically as follows. 

 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

�
(𝑥̅𝑥1,𝑥̅𝑥2)

≈
𝑓𝑓�𝑥̅𝑥1 + 𝜎𝜎𝑥𝑥1 , 𝑥̅𝑥2� − 𝑓𝑓�𝑥̅𝑥1 − 𝜎𝜎𝑥𝑥1 , 𝑥̅𝑥2�

2 ∙ 𝜎𝜎𝑥𝑥1
, (5) 

with a similar expression for � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

�
(𝑥̅𝑥1,𝑥̅𝑥2)

.  

The question of how to form the expectation value over all possibilities of the controlling input variables 
is straight forward because in the linear approximation, 𝐸𝐸[𝑦𝑦] = 𝑓𝑓(𝜇𝜇1,𝜇𝜇2), and the estimator 𝑦𝑦� =
𝑓𝑓(𝑥̅𝑥1, 𝑥̅𝑥2) is defensible because 𝐸𝐸[𝑥̅𝑥1] = 𝜇𝜇1 and [𝑥̅𝑥2] = 𝜇𝜇2. Thus, the deviation becomes 

 (𝑦𝑦 − 𝑦𝑦�) = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

� ∙ (𝑥𝑥1 − 𝑥̅𝑥1) + �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

� ∙ (𝑥𝑥2 − 𝑥̅𝑥2), (6) 

where the subscripts on the partial derivatives are now implied.  

Now suppose that knowledge of both 𝑥̅𝑥1 and 𝑥̅𝑥2 come from a sample data of equal size 𝑛𝑛. Then one can 
square and average the deviation to obtain the variance in the measurement results to obtain the 
fundamental PoV result, according to the linear approximation of the measurement equation,  

 𝜎𝜎𝑦𝑦2 = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

�
2

𝜎𝜎𝑥𝑥1
2 + 2 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

� �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

� 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1, 𝑥𝑥2) + �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

�
2

𝜎𝜎𝑥𝑥2
2 , (7) 
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where sample estimates of the standard errors in the means and the standard covariance of the means (i.e., 
the best estimates for the uncertainty structure of the underlying population) are given by: 

 

𝜎𝜎𝑥𝑥1
2 =

1
𝑛𝑛(𝑛𝑛 − 1)

� (𝑥𝑥1𝑖𝑖 − 𝑥̅𝑥1)2
𝑛𝑛

𝑖𝑖=1
 

𝜎𝜎𝑥𝑥2
2 =

1
𝑛𝑛(𝑛𝑛 − 1)

� (𝑥𝑥2𝑖𝑖 − 𝑥̅𝑥2)2
𝑛𝑛

𝑖𝑖=1
 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1, 𝑥𝑥2) =
1

𝑛𝑛(𝑛𝑛 − 1)�
(𝑥𝑥1𝑖𝑖 − 𝑥̅𝑥1)

𝑛𝑛

𝑖𝑖=1
(𝑥𝑥2𝑖𝑖 − 𝑥̅𝑥2) =

𝑟𝑟
𝜎𝜎𝑥𝑥1𝜎𝜎𝑥𝑥2

= 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥2, 𝑥𝑥1). 

(8) 

The linear correlation coefficient 𝑟𝑟 lies in the interval [-1, +1] and is a convenient measure of the strength 
of the linear correlation between the pair of variables. Whether 𝑟𝑟 differs from zero (no correlation) by a 
statistically significant amount requires a hypothesis test which will not be discussed here but note that 
visualization of the data, as well understanding any causal relationship within and between the data, is 
extremely important.  

If a pair of random variables 𝑥𝑥1 and 𝑥𝑥2 are truly independent, then the expected value of 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1,𝑥𝑥2) = 0 
because a change in one of the values means nothing to the other. Put another way, for independent 
random variables, 𝐸𝐸[(𝑥𝑥1 − 𝑥̅𝑥1) ∙ (𝑥𝑥2 − 𝑥̅𝑥2)] = 𝐸𝐸[𝑥𝑥1 − 𝑥̅𝑥1] ∙ 𝐸𝐸[𝑥𝑥2 − 𝑥̅𝑥2] = 0. There could be good reason 
to assume 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1,𝑥𝑥2) = 0 based on physics grounds. In cases where this is not clear, it is not uncommon 
to simply assume there are no significant covariances without proper analysis to justify it. This is bad 
practice and can lead to poorly expressed and misleading confidence estimates.  

Although the PoV expression was developed for the case of sampled data, it can also be applied to the 
case of Type B uncertainties because conceptually Type B uncertainties can also be treated as following 
to some probabilistic distribution.  

Moreover, even though one can formally write the sensitivity coefficients 𝑆𝑆𝑥𝑥𝑖𝑖 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

 as a partial derivative, 
it might not be easy to express the derivatives analytically. Numerical differentiation can be used instead 
for well-behaved functions. In other cases, judgments may come into play, and one may need to poll 
several experts to get a distribution of views that can be propagated. When the assay involves logic trees, 
then one might consider performing many forward calculations by sampling the input variables according 
to their known uncertainty structure and correlations to construct the PDF of results. 

12.4 COVARIANCE 

Including covariance between random variables when combining uncertainties rather than using a 
treatment that relies on the variables also being independent is an important concept. Of course, the 
emphasis is then placed on recognizing that correlation exists and on how to estimate the value of the 
covariance (or linear correlation coefficient). Visualization of the data is often a great help. Working in 
terms of the known independent variables is also often very helpful. The covariance can then be found by 
analysis. For instance, suppose the thickness of a container wall has been measured close in time using 
two different and independent techniques other than for the fact that both require a correction for 
temperature, 𝜃𝜃. 

Then, suppose the two thickness values are written as follows: 

 𝑙𝑙1 = 𝑦𝑦1(1 − 𝑎𝑎1(𝜃𝜃 − 𝜃𝜃1)). (9) 
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 𝑙𝑙2 = 𝑦𝑦2(1 − 𝑎𝑎2(𝜃𝜃 − 𝜃𝜃2)). (10) 

The two values are clearly linked through the common temperature measurement, which is itself subject 
to measurement uncertainty. Forming the product of deviations about 𝜃𝜃 = 𝜃̅𝜃, the estimated mean value, 
leads to 

 𝑑𝑑𝑑𝑑1𝑑𝑑𝑑𝑑2 =
𝜕𝜕𝑙𝑙1
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝜕𝜕𝑙𝑙2
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 = +𝑦𝑦1𝑎𝑎1𝑦𝑦2𝑎𝑎2𝑑𝑑𝑑𝑑2, (11) 

which, after averaging, becomes 

 𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙1, 𝑙𝑙2) = 𝑦𝑦1𝑎𝑎1𝑦𝑦2𝑎𝑎2𝜎𝜎𝜃𝜃2. (12) 

Another instance where correlation is often important is when calibration-model parameters (e.g., slope 
and intercept) are estimated from a data set of calibration data. Because all the parameters are computed 
from the same calibration data set, the values are naturally covariant. Results derived using combinations 
of the model parameters (for instance, the ratio of the slope to the intercept) must take into account the 
correlation between then. Alternatively, one could formulate the problem directly, so that the intermediate 
results do not need to be either calculated or reported, and one could dither all of the input data consistent 
with the known uncertainty structure and generate the PDF of the sought-after result empirically by brute 
force. 

Data visualization (charts, diagrams, graphs, pictograms, animations) is a powerful way to communicate 
data and uncertainty. To avoid being misleading, it is also useful to keep in mind what a chart is not 
showing and that correlation is not causation. Aggregate data may conceal other factors that are at place 
such as operator differences, quieter mains power supply during the night shift, a gradually failing sensor, 
differences spectral analysis by software tool, and so on).  

12.5 LINEAR ALGEBRA 

A more compact and convenient way to write the PoV equations for larger problems is to use the power 
of linear algebra. If 

 𝑦𝑦 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … . 𝑥𝑥𝑛𝑛), (13) 

where 𝑛𝑛 now denotes the number of variables, not a sample size, the variance 𝜎𝜎𝑦𝑦2 in 𝑦𝑦 can be expressed in 
matrix notation as 

 𝑉𝑉𝑦𝑦 = 𝐷𝐷𝑇𝑇𝑉𝑉𝑥𝑥𝐷𝐷, (14) 

where 𝑉𝑉𝑦𝑦 is the covariance matrix for 𝑦𝑦, which for this problem is a 1 × 1 array with element 𝜎𝜎𝑦𝑦2. The 
covariance matrix, 𝑉𝑉𝑥𝑥, describes the uncertainty structure in and between the x-values and is given by 

 𝑉𝑉𝑥𝑥 =

⎝

⎜⎜
⎛

𝜎𝜎𝑥𝑥1
2 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1, 𝑥𝑥2) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1, 𝑥𝑥3) … 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1, 𝑥𝑥𝑛𝑛)

𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥2, 𝑥𝑥1) 𝜎𝜎𝑥𝑥2
2 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥2, 𝑥𝑥3) … 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥2, 𝑥𝑥𝑛𝑛)

𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥3, 𝑥𝑥1) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥3, 𝑥𝑥2) 𝜎𝜎𝑥𝑥3
2 … 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥3, 𝑥𝑥𝑛𝑛)

⋮ ⋮ ⋮ … ⋮
𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑛𝑛 , 𝑥𝑥1) 𝑐𝑐𝑐𝑐𝑣𝑣(𝑥𝑥𝑛𝑛 , 𝑥𝑥2) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑛𝑛 , 𝑥𝑥3) … 𝜎𝜎𝑥𝑥𝑛𝑛

2 ⎠

⎟⎟
⎞

. (15) 

The covariance matrix is symmetric and of size n × n.  
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𝐷𝐷 is the column vector of partial derivatives 

 𝐷𝐷 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥3
⋮
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

, (16) 

and 𝐷𝐷𝑇𝑇 is its transpose. 

The previous result is easily generalized to the case where a collection of ys (y1, y2, y3, …. yn) are 
functions of the xs, (x1, x2, …. xn). This is a very common situation in practice. For example, the same 
calibration data set is used to determine several model (fit) parameters, or various nuclear data 
“constants” may be collectively evaluated from the same set of differential and integral experimental data. 
In this case, redefine 𝐷𝐷 as follows: 

 𝐷𝐷 =

⎝

⎜
⎜
⎜
⎜
⎛

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

…
𝜕𝜕𝑓𝑓𝑚𝑚
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥2

…
𝜕𝜕𝑓𝑓𝑚𝑚
𝜕𝜕𝑥𝑥2

⋮ ⋮ … ⋮
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥𝑛𝑛

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥𝑛𝑛

…
𝜕𝜕𝑓𝑓𝑚𝑚
𝜕𝜕𝑥𝑥𝑛𝑛⎠

⎟
⎟
⎟
⎟
⎞

, (17) 

where the elements may be populated by algebraic differentiation or numerically by finite-difference 
differentiation.  

The matrix expression 𝑉𝑉𝑦𝑦 = 𝐷𝐷𝑇𝑇𝑉𝑉𝑥𝑥𝐷𝐷 now returns the m × m symmetric covariance matrix describing the 
covariance structure between the m y-values.  

13. THE MATERIAL BALANCE EQUATION 

The material balance equation over an accounting period or interval of time, 𝑡𝑡, for the amount of material 
present in a material balance area (MBA), is a statement of the conservation of mass 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + (𝐼𝐼𝐼𝐼 − 𝑂𝑂𝑂𝑂𝑂𝑂) −𝑀𝑀𝑀𝑀𝑀𝑀 (𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼), (1) 

where MUF is the so-called “material unaccounted For” amount, which is also commonly called 
inventory difference (ID), and (In – Out) accounts for all transfers across the MBA boundary and includes 
(in some instances) radioactive decay (e.g., for 241Pu).  

Assuming normally distributed experimental quantities, the PDF for mass, 𝑚𝑚, is also approximately 
Gaussian 

 𝑝𝑝(𝑚𝑚) ∙ 𝑑𝑑𝑑𝑑 =
1
√𝜋𝜋

∙ 𝑒𝑒𝑒𝑒𝑒𝑒 �− �
𝑚𝑚 −𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

√2 ∙ 𝜎𝜎
�
2
� ∙

𝑑𝑑𝑑𝑑
√2 ∙ 𝜎𝜎

. (2) 
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The safeguards objective is to make a timely detection of a significant quantity (1 significant quantity or 
more) of missing material with a given probability while maintaining some permissible small probability 
of false alarms. It follows familiar logic from Lloyd Currie’s work on detection and quantification limits. 
For an extension to Currie, see (Agboraw 2017; Kirkpatrick, Venkataraman, and Young 2013).  

Rearranging and being a little more formal in notation, the ID may be expressed as follows: 

ID = [PB + (Receipts, X – Removals, Y)] – PE = BE-PE, 

where  

PB and PE are the beginning (or opening) and ending (or closing) physical materials inventories based on 
locating the material and performing measurements, sampling, weighing, and analysis, 

and 

𝐵𝐵𝐸𝐸=BI+X-Y is the ending (or closing) accountancy book value based on the initial book inventory 
accounting records of (X-Y).  

When BE-PE>0, the ID is positive, which could be interpreted as a loss of material. A large positive 
inventory difference outside the estimated error limits could indicate the following: 

• Accidental loss of material, 
• Accumulation of holdup in difficult-to-measure items of equipment, 
• A process change or operational problem, 
• Theft, or 
• Measurement bias that is not accounted for in the known random and systematic error sources. 

Both the opening book inventory and the physical inventory are based on measured values (except for 
verification by item counting when feasible). The limits of error can be large for complex processing 
facilities. Therefore, an ID within the limit of error (for example, a negative value) does not exclude the 
possibility of loss. Thus, the information provided by the material accounting system is also 
supplemented by information from the internal control system, the physical protection system, 
inspections, and evaluation of various kinds (including special investigations) to resolve any issues, and 
so on.  

In the United States, all Nuclear Regulatory Commission- (NRC-) licensed fuel facilities authorized to 
possess more than one effective kilogram of special nuclear material fall under the NRC’s graded 
approach to safeguards and pursuant to 10 Code of Federal Regulations (CFR) 74.17. Operators must 
report the results of each physical inventory to the NRC. The frequency of physical inventory (6, 9, or 12 
months) depends on the strategic significance (type and amounts) of material.  

One measure of material balance closure over the period is determining whether the ID is consistent with 
zero within three times the standard error of inventory difference (SEID), “3σ.” If it is, and the ID does 
not exceed the facility/site specific regulatory (license) mass limits, no compelling reason exists to think a 
diversion has taken place or that an investigation is called for.  

The SEID is used to describe total SD (random plus systematic for all assay methods) associated with an 
ID value. It is the nominal 68% (1-σ) confidence level. From the one-sided normal probability table (one 
sided if the statistical test is for loss only, not for gain), an ID corresponding to a mass-loss of 



 

24 

approximately (𝑄𝑄 − 1.3 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) would be detected with 90% probability. This can be seen by centering 
the measurement distribution on Q and stepping back.  

However, SEID is defined by US Department of Energy rules, not measurement science, as follows: 

For Category III licensees subject to 10 CFR 74.31 or 74.33, the SEID is defined to be equal to 
quadrature sum of both the measurement and nonmeasurement variances associated with an ID, i.e., 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �𝑣𝑣𝑣𝑣𝑣𝑣(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑣𝑣𝑣𝑣𝑣𝑣(𝑛𝑛𝑛𝑛𝑛𝑛 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚).  

For both Category I licensees subject to 10 CFR 74.59 and Category II licensees subject to 10 CFR 10 
74.43, the SEID is defined to be equal to the square root of the measurement variance (only) associated 
with an ID, i.e., 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �𝑣𝑣𝑣𝑣𝑣𝑣(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚).  

In some instances, some parts of the inventory may not have changed so that the exact same inventory 
value gets used in both the beginning and closing values, such as a piece of equipment or an item that has 
remained intact and unused throughout the period. In such cases, defining a new quantity is useful. This 
quantity is the active inventory (𝐴𝐴𝐴𝐴), which is a measure of throughput and the only part of the current 
inventory that is subject to new measurement uncertainty. Certain regulatory limit of error for inventory 
differences (LEID) are expressed in terms of the 𝐴𝐴𝐴𝐴. For example, in criteria such as (US Department of 
Energy 2003), the ID cannot exceed 2% of the AI (“throughput”) up to 2 kg with 90% confidence. For 
complex and high-throughput facilities maintaining 2% accuracy, though physical measurements alone, 
are usually extremely challenging or not practical. In this example, meeting the 2 kg quantity becomes the 
goal and might drive the overall accountancy strategy, which may include: 

• Process optimization and control and use of near-real-time monitoring, 
• Emphasis on high-accuracy instrument selection, calibration, and acceptable knowledge, 
• Definition of MBA boundaries, key measurement points, and the role of subMBAs, and 
• Frequency of material balance closure so that amounts are kept small. 

Because taking a facility down to perform wall-to-wall physical inventory is both time consuming and 
costly, designing the measurement strategy to be fully compliant in an efficient way should receive 
appropriate attention from the onset.  

Often the NDA measurement program may support several needs, including operational, safety 
(criticality), materials control and accountancy, and waste management. The performance, uncertainty 
targets and reporting requirements of each consumer needs to be considered because retrofitting a solution 
can often be expensive and present a variety of issues.  

14. TOP-DOWN VS. BOTTOM-UP UNCERTAINTY QUANTIFICATION FOR 
NONDESTRUCTIVE ASSAY IN SUPPORT OF THE MATERIAL BALANCE EQUATION 

Recall that the bottom-up approach propagates or combines error variances from all identified sources of 
measurement variation. In contrast, the alternative top-down approach does not concern itself with 
creating a complete uncertainty budget by each contributing factor. Instead, the precision and accuracy 
(inverse of the random error SD and the systematic error SD, respectively) are evaluated by comparing 
against known values (e.g., performance demonstration plan items), or against other reference methods, or 
by using round-robin comparisons which represent independent experiments. The emphasis is on the 
analysis of paired data (measured—assigned true), and the overall uncertainty is evaluated by statistical 
methods by looking at the empirically observed scatter. The top-down approach quantifies performance 
but without the insights provided by the bottom-up analysis. Typically, the top-down uncertainty exceeds 
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the bottom-up uncertainty, suggesting that the bottom-up approach may be incomplete or biased low 
(overly optimistic). The difference is referred to as dark uncertainty because it is hidden or 
unrecognized, sometimes 
simply because fielded 
NDA methods have error 
sources that are not 
accounted for in NDA 
laboratory bottom-up 
evaluations. 

The International Atomic Energy Agency’s (IAEA’s) material balance equation uses the Inspector’s 

 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝑀𝑀𝑀𝑀 –  𝐷𝐷, (1) 

where D is a difference statistic between paired operator and inspector measurements. Better bottom-up 
UQ for NDA is needed in support of the material balance equation and to identify and manage dark 
uncertainty. Dark uncertainty is more commonly positive, which suggests that something has been 
overlooked in the bottom-up analysis or that the measurement process is not as well understood as 
believed. An experimenter is perhaps understandably proud of their technique and confident in their 
abilities to be overly optimistic and perhaps is not be aware of all uncertainty sources in fielded 
instruments.  

It is important to remember in brainstorming the set of things that can influence the result that some of the 
most important variables may not be simple physical quantities, such as cross sections, energy spectra, 
mass compositions, geometry, and the like. Rather, variables can be implicit, such as assumptions and 
analysis procedures that may seem natural and obvious but should be challenged, nonetheless. For 
example, the add-a-source correction for passive neutron coincidence counting of drummed waste 
requires a volume-weighted-average response. However, typically experimental calibration data are 
available only on a crude spatial grid. This may point to a planning weakness.  

For high moderator content, the mathematical procedure for how the volume-weighted-average response 
is defined (e.g., fit and integrate, create iso-contours and sum by ring, define volume elements around 
each point, the data into a tool such as AutoCAD and use splines and the built-in analysis tool) can have a 
large impact—50% or more relative difference between definitions. Some of the most critical 
dependencies may have to do with things that cannot be easily changed. For instance, the detector may 
exist already and not optimised to the current task, source tailoring to reduce 238U response in active 
neutron interrogation systems may be difficult to account for, wholly objective assessments might not be 
possible about the accuracy of simulation libraries used for calibration, and so forth. Many dependencies 
are intertwined even though they are often treated then as separate. For instance, if the source distribution 
is shifted, the counting precision and rate loss corrections will change even though a sensitivity analysis 
assumes the geometrical change in the detection efficiency is the main aspect of the measurement that 
was changed.  

 

  

 PRACTICE 

Sketch these two basic approaches to performance assessment and performance 
demonstration. 
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CHAPTER 1 SUMMARY 

• A scientific measurement or calculation is incomplete without a statement, supported by additional 
information, about the associated estimated uncertainty.  

• “Uncertainty” is a useful qualitative term that often means the SD of a measurement error component. 
Sometimes “uncertainty” or “expanded uncertainty” refers to a CI width of half-width, which is often 
a multiple of the error SD. 

• We have seen how a variety of nonparametric and parametric statistical methods can be used to 
organize and summarize sample data and to make inferences. 

• Special mention was made of the Poisson distribution in connection to nuclear counting. It holds a 
special place in radiometric, and of the Central Limit Theorem, which is commonly invoked to justify 
using the normal distribution to describe a variety measurement uncertainties.  

• Statistical methods help optimize and select measurement procedures to meet a given task and to 
maintain the measurement program within control. 

• Different ways to assess uncertainty contributions exist. The top-down and bottom-up approaches 
were introduced.  

• There are different ways to combine various uncertainty contributions to form the total measurement 
uncertainty. This was illustrated by taking a worked example that used the PoV. We emphasized the 
importance of providing the consumer of the analysis with a sufficient understanding of the 
measurement process, the measurement equation (or algorithm), and the mathematical techniques of 
statistical analysis applied. General classes of measurement error models (additive, multiplicative, 
mixed), were discussed. The example of the material balance equation was provided, and the chapter 
concluded with the example of a density measurement.  

• Because the intended audience for this book is measurement experts, the chapter emphasized bottom-
up UQ. Approximately every 10 years, the IAEA publishes relative standard deviation estimates for 
many measurement methods commonly used in nuclear safeguards (Zhao 2010); these relative 
standard deviation estimates are used at the IAEA to estimate the SEID and to design sampling plans 
to detect data falsification. Many of the published relative standard deviation estimates are based on 
top-down UQ, using specialized analysis of variance. Bonner et al. (2016) and Burr (Burr, Croft, et al. 
2016) provide further discussion on how statistical methods are used to verify nuclear material 
inventories (Bonner 2016; Burr, Croft, et al. 2016; Burr, Krieger, et al. 2016). The American Society 
for Testing and Materials maintains a number of useful standards and guides in NDA instruments and 
methods and the National Institute of Standards and Technology has a very good on-line handbook on 
statistical methods (National Institute of Standards and Technology 2012). 
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EXERCISES 

Solutions for Exercises 3, 4, and 6 are included at the end of this chapter. 

Exercise 1 
Consider the following contrived example in which the number of counts in channel two is twice that of 
channel one. Consider the linear combination 𝑦𝑦 = 2𝑥𝑥1 + 3𝑥𝑥2 and, for instance, if the units of 𝑥𝑥1 and 𝑥𝑥2 
are units of activity 𝑦𝑦 that might be intended to be a measure of radiation damage.  

1. Using the data in Table 3, calculate the mean, variance of 𝑥𝑥1 and 𝑥𝑥2, and the covariance and linear 
correlation coefficient between them. Plot 𝑥𝑥2 against 𝑥𝑥1 to get a visual sense of whether the 
correlation is meaningful. 

2. Combine the uncertainties by PoV. What is the effect of neglecting covariance? 

3. Show that the combined uncertainty (in this case) is the same as in using only the independent 
variable 𝑥𝑥1 and writing 𝑦𝑦 = 8𝑥𝑥1.  

Table 3. Numerical data for use in the PoV example. 

Reading 𝒙𝒙𝟏𝟏 [Bq] 𝒙𝒙𝟐𝟐 [Bq] 
1 10 20 
2 9 18 
3 11 22 
4 12 24 
5 8 16 

 

In this case, five y-values could be generated from the paired data and the results computed directly. 
However, in general, this leads to combining uncertainties for which no simple table exists. Yet the idea 
of generating a distribution of y-values by Monte Carlo sampling of all the input variables from 
distribution (including bootstrapping of finite samples) can be an attractive alternative way of evaluating 
the overall uncertainty. 

Exercise 2 
Letting 𝑦𝑦 = 𝑓𝑓(𝑥𝑥), find the relative SD 𝜎𝜎𝑦𝑦

𝑦𝑦
 for 𝜎𝜎𝑥𝑥

𝑥𝑥
= 0.01 when: (1) 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥−1; (2) 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥−1 2⁄ ; (3) 

𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥0; (4) 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥1 2⁄ ; (5) 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥1; (6) 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥3 2⁄ ; (7) 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥2; (8) 𝑓𝑓(𝑥𝑥) = 𝑙𝑙𝑙𝑙(𝑎𝑎𝑎𝑎). 

Exercise 3 
Let 𝑓𝑓 = 𝑥𝑥 − 𝑎𝑎 and 𝑔𝑔 = 𝑦𝑦 − 𝑏𝑏. Find 𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓,𝑔𝑔) given 𝑎𝑎 and 𝑏𝑏 are simple constants and 𝑥𝑥 and 𝑦𝑦 are 
measured values with a finite covariance.   
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Exercise 4 

If the correction factor 𝜃𝜃 =
�1+𝜐𝜐𝑑𝑑𝜐𝜐1

�

�1+𝑟𝑟𝜐𝜐𝑑𝑑𝜐𝜐1
�
2, what is the fraction standard uncertainty 𝜎𝜎𝑓𝑓

𝑓𝑓
 in 𝑓𝑓 due to the fractional 

standard uncertainty in 𝜐𝜐𝑑𝑑?  

Hint: For the function 𝑓𝑓(𝑥𝑥) = 𝑇𝑇(𝑥𝑥)
𝐿𝐿2(𝑥𝑥), show that the derivative 𝑓𝑓′ of 𝑓𝑓(𝑥𝑥) with respect to 𝑥𝑥 is 𝑓𝑓′ =

�𝑇𝑇′
𝑇𝑇
− 2 𝐿𝐿′

𝐿𝐿
�. 

Exercise 5 
Let 𝑦𝑦1 = 𝑥𝑥1

𝑥𝑥1+𝑥𝑥2
 and 𝑦𝑦2 = 𝑥𝑥2

𝑥𝑥1+𝑥𝑥2
 with 𝜎𝜎𝑥𝑥1

2 = 1, 𝜎𝜎𝑥𝑥2
2 = 1, 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1,𝑥𝑥2) = 0.  

Show 𝑦𝑦1 = 0.4 ± 0.072, 𝑦𝑦2 = 0.6 ± 0.072, and 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦1,𝑦𝑦2) = −0.0052. 

Define a new relationship, z=𝑦𝑦1 + 𝑦𝑦2. Using 𝑉𝑉𝑧𝑧 = 𝐷𝐷𝑇𝑇𝑉𝑉𝑦𝑦𝐷𝐷, show 𝑧𝑧 = 1 ± 0, which is correct because by 
definition 𝑦𝑦1 + 𝑦𝑦2 = 𝑥𝑥1+𝑥𝑥2

𝑥𝑥1+𝑥𝑥2
. (See Section 12). 

Exercise 6 
Let 𝑦𝑦1 = 𝑥𝑥 and 𝑦𝑦2 = 𝑥𝑥2; 𝑦𝑦1 and 𝑦𝑦2 are clearly correlated. For 𝑧𝑧 = 𝑦𝑦2 𝑦𝑦1⁄ , show 𝜎𝜎𝑧𝑧2 = 𝜎𝜎𝑥𝑥2.  
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SOLUTIONS 

Exercise 3 Solution  
𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓,𝑔𝑔) = 〈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑〉 = 〈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑〉 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦). Note that we have used the shorthand 𝑑𝑑𝑑𝑑 = 𝑓𝑓 − 𝑓𝑓̅ =
(𝑥𝑥 − 𝑎𝑎) − (𝑥̅𝑥 − 𝑎𝑎) = 𝑥𝑥 − 𝑥̅𝑥, 𝑑𝑑𝑑𝑑 = 𝑦𝑦 − 𝑦𝑦� and 𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓,𝑔𝑔) = 〈(𝑥𝑥 − 𝑥̅𝑥)(𝑦𝑦 − 𝑦𝑦�)〉. This also yields the useful 
sample result for paired data: 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦) = 𝑥𝑥𝑥𝑥��� − 𝑥̅𝑥𝑦𝑦�. For the special case 𝑥𝑥 = 𝑦𝑦, this reduces to 
𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑥𝑥) = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥) = �𝑥𝑥2��� − 𝑥̅𝑥2�.  

Discussion 
Notably, because the PoV method linearizes the relationship between predictor and response and requires 
the function to be well behaved over the region of interest, some of the results obtained by the mechanical 
application of the PoV formula may require additional scrutiny for validity. For example, consider the 
case where the measurand 𝑦𝑦 is obtained from 1

𝑥𝑥
, where 𝑥𝑥 is a random variable. Suppose 𝑥𝑥 is distributed 

according to a flat (uniform or rectangular) distribution between the limits 𝑎𝑎 and 𝑏𝑏, where 𝑏𝑏 > 𝑎𝑎 > 0. 
The 𝑥𝑥-distribution is symmetric about the mean 𝜇𝜇𝑥𝑥 = 𝑏𝑏+𝑎𝑎

2
 and has a SD 𝜎𝜎𝑥𝑥 = 𝑏𝑏−𝑎𝑎

√12
. The 𝑦𝑦-distribution can 

be obtained by invoking 1:1 correspondence between 𝑦𝑦 and 𝑥𝑥, and hence incremental probabilities, i.e., 
𝑝𝑝(𝑦𝑦)𝑑𝑑𝑑𝑑 = 𝑝𝑝(𝑥𝑥)𝑑𝑑𝑑𝑑, which results in 𝑝𝑝(𝑦𝑦) = − 1

𝑏𝑏−𝑎𝑎
∙ 1
𝑦𝑦2

 between the lower limit 1
𝑏𝑏
 and the upper limit 1

𝑎𝑎
. As 

seen immediately, the distribution is not symmetric, nor is it centered on 1
𝜇𝜇𝑥𝑥

. In fact, the expectation value 

of 𝑦𝑦 is 𝜇𝜇𝑦𝑦 = 1
𝑏𝑏−𝑎𝑎 ∫

𝑑𝑑𝑑𝑑
𝑥𝑥

𝑏𝑏
𝑎𝑎 = 1

𝑏𝑏−𝑎𝑎
∙ ln �𝑏𝑏

𝑎𝑎
� = 𝑙𝑙𝑙𝑙 �

𝑏𝑏+𝑎𝑎
2 +𝑏𝑏−𝑎𝑎2

𝑏𝑏+𝑎𝑎
2 −𝑏𝑏−𝑎𝑎2

�, which can be shown to tend to 1

�𝑏𝑏+𝑎𝑎2 �
= 1

𝜇𝜇𝑥𝑥
 in the 

limit 
𝑏𝑏−𝑎𝑎
2

𝑏𝑏+𝑎𝑎
2

= √3 𝜎𝜎𝑥𝑥
𝜇𝜇𝑥𝑥
→ 0, i.e., when the 𝑥𝑥-distribution is narrow. As an exercise, show under what 

conditions 𝜎𝜎𝑦𝑦
𝜇𝜇𝑦𝑦
→ 𝜎𝜎𝑥𝑥

𝜇𝜇𝑥𝑥
.  

Comment 
1/X does not have any finite moments if X ~ uniform on (0,1) (or even if X ~ normal)) 
Turning now to the case where the 𝑥𝑥-distribution is normal, it is again found that the 𝑦𝑦-distribution is not 
normal and that the uncertainty propagation is inherently nonlinear. In this case, we must also confront 
the theoretical possibility that 𝑥𝑥 can be arbitrarily close to zero so that 1

𝑥𝑥
 can become extremely large and, 

in fact, 1
𝑥𝑥
 has a Cauchy distribution and so all moments are infinite. If |𝜇𝜇𝑥𝑥| ≥ 3𝜎𝜎𝑥𝑥, then as a practical 

matter 1
𝑥𝑥
 can be truncated so that all moments are finite, and the truncation has any effect with less than 

1% relative frequency. However, if |𝜇𝜇𝑥𝑥| ≤ 3𝜎𝜎𝑥𝑥, then truncation might not be acceptable, and the variance 
is infinite As a rule of thumb, if �𝜎𝜎𝑥𝑥

𝜇𝜇𝑥𝑥
� < 0.1, the 68.3% CI will be well approximated by PoV with about 

10% or better.  

The takeaway message is that when applying PoV to reciprocal quantities, always check whether PoV 
leads to a valid approximation for the task or use an alternative method to estimate CIs, such as Monte 
Carlo sampling. However, even Monte Carlo sampling might be misleading, such as in the case where X 
has a normal distribution with large or moderate relative SD as just described. 

Exercise 4 Solution  

�

𝜐𝜐𝑑𝑑
𝜐𝜐1

�1 + 𝜐𝜐𝑑𝑑
𝜐𝜐1
�
− 2

𝑟𝑟 𝜐𝜐𝑑𝑑𝜐𝜐1
�1 + 𝑟𝑟 𝜐𝜐𝑑𝑑𝜐𝜐1

�
� �
𝜎𝜎𝜐𝜐𝑑𝑑
𝜐𝜐𝑑𝑑
�. 
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Exercise 6 Solution  
Ignoring covariance, the result is 𝜎𝜎𝑧𝑧2 = 5𝜎𝜎𝑥𝑥2. 
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	Statistics is, or should be, about scientific investigation and how to do it better,but many statisticians believe it is a branch of mathematics.George E.P. Box (1919–2013)
	1. INTRODUCTION
	Statistical methods are an essential element to making quality measurements, allowing the organization and interrogation of data in a structured way. This introductory chapter describes key concepts of measurement statistics that are used in many nondestructive assay (NDA) methods and is intended as a primer to the reading list provided in the reference section. (Croft and Burr 2016; Smith 1991; Smith 2013; Taylor 1997; Triola 2017). The textbooks by Triola on elementary statistics (Figure 1), Taylor, and Smith (2013) introduce uncertainty analysis in the physical sciences. Smith (1991) provides a rigorous introduction with examples to correlated variables. These texts collectively offer an excellent foundation for understanding essential statistical concepts. 
	The presence of a standardized system of measurements is so ingrained that it is easy to overlook. Even so, measurements that can be trusted by both domestic and international practitioners and stakeholders are the basis of trade, enable the development and application of technology, and underpin the scientific method; they are central to human civilization and culture. However, too often measurement practices and uncertainty assessment are neither well defined nor well understood across the different domains. This leads to a lack of consistency and different definitions of terminology, creating confusion, bias, and misunderstandings.
	By definition, metrology is the science of measurements. A measurement is a set of operations used to determine the value of a quantity where the object of a measurement is the measurand. A basic premise of measurement theory is that at the time of measurement, the quantity has a definite value. However, the presence of intrinsic measurement uncertainty means that although great care may be taken to replicate the measurement process, the outcomes across replicates will not match exactly—measurement uncertainty is always present. Therefore, whenever a measured value is presented, the possibility that it is wrong to some degree must be considered, and an appropriate design margin or contingency should be made. Because of this, no measurement result or scientific calculation has meaning unless the measurement uncertainty has also been defensibly assessed. The methodology of the measurement and the corresponding uncertainty assessment must be communicated in detail and with transparency and granularity so that the information can be reliably used for the intended purpose. Once a data set has been shown to be free of any confounding influences that do not need to be reported separately, the uncertainty associated with a measurement is typically reported at the summary level by stating the degree of confidence or degree of credibility (depending on the philosophical framework) that can be defensibly assigned to the measurement value. The measured value is the best estimate of the true, albeit unknown, value of the quantity of interest and is unlikely to be exact and so will almost always be higher or lower than the true value. One simple and common way to report the outcome of the uncertainty quantification process is to report a confidence interval (CI). This interval is a range of values that bracket the measured value, typically plus and minus a multiple, k, that has been calculated based on the uncertainty assessment. If a normal distribution applies to the uncertainty assessment, then k would represent a multiple of the standard deviation (SD). Another common way to quantify the measurement uncertainty is to estimate the so-called “random” and “systematic” error variance components, as will be explained later.
	/
	Figure 1. Mario Triola’s Elementary Statistics is considered a standard text within the discipline.
	Most measurements are neither direct nor absolute but instead rely on calibration of instruments that must first be properly designed, manufactured, and adjusted. Calibration is the process that establishes the mathematical relationship between the response and reference standards. These reference standards are extremely important and are maintained by a worldwide network of national laboratories. 
	Reference standards are scientifically created values that are accepted, can be maintained, and for which a way exists to scale the standard value upward or downward. As an example, the former International Prototype of the Kilogram revised in May 2019 is shown in Figure 2. Physical reference standards are also used in the development and verification of measurement approaches and as part of quality assurance and performance demonstration programs. Measurement control is the process that ensures the calibration is within defined tolerance and that statistical process control methods can be applied throughout the process. Statistical methods help establish the calibration, monitor the health of the instrument, predict reliability, establish maintenance and recalibration intervals, identify process (performance) improvements, and quantify uncertainty. Statistical methods are used to manage resources (e.g., investment decisions in new equipment or total cost of ownership) and ensure best practices.
	Informally, statistics refers to a collection of numbers or facts (e.g., batting averages) but as used in science, statistics refers to quantities calculated from a sample and/or to inference. The sample is a subset of a population made by observations and measurements. For example, imagine that a large sack contains a mixture of blue and green marbles. One goal could be to infer or estimate which fraction of the marbles are blue without inspecting each marble. The entire contents of the sack (the mixture of blue and green marbles) are the entire population. If the total number of marbles in the sack is not too large, then it might be possible to remove the entire contents and count the number of blue and the number of green. However, when too many objects exist to reasonably count, one could pull marbles out of the sack to create a sample of size n. There are two ways to do this. One way would be to remove the n marbles without replacement. Another, sampling with replacement, would be to remove a single marble, record it, replace it, rerandomize the contents and make another selection and do this n-times If the number of marbles, N, in the sack is huge compared to the number sampled, n, then the difference between the information obtained by sampling with or without replacement will be small. However, when N is not much greater than n, the two approaches are different. In general, for radiometric applications, sampling with replacement is a great approximation. This example is analogous in some ways to making an 235U/U enrichment determination where the green marbles represent the 235U wt %, and the blue marbles represent the 238U wt % of a large sample.
	/
	Figure 2. The former International Prototype Kilogram. Source: Bureau International des Poids et Mesures (BIPM).
	Descriptive statistics summarize the properties of the sample of size n. Inferential statistics extends beyond just the sample to make estimates about the properties of the underlying but unobserved population. To do this, assumptions are made to varying degrees about the mathematical form of the population. The mathematical form can involve model parameters (parametric) or not (nonparametric). This difference is what separates nonparametric and parametric approaches; semiparametric approaches lie in between. Estimates of the population properties are not exact because the sample is an arbitrary subset of the population and is subject to random fluctuation. A pivotal quantity, or pivot, is a function of the sample observations and the (i.e., unobservable, and unknown true parameters of the population distribution, but it can be used to construct statistical tests and CIs. Pivotal quantities can be used to estimate estimator quality. In other words, in practice, fully understanding everything is impossible. 
	Real data sets, being finite in size (and hence of limited information compared to the population from which they are sampled), are always nuanced. Additionally, a single “correct,” wholly objective way of assigning a defensible uncertainty may not exist. 
	Different users may also have quite different needs for the reported results, and therefore may take different approaches to assessing uncertainty under various circumstances. However, assessing and combining uncertainties for nuclear materials accountancy and control is best and most often approached through frequent and applied measurement statistics. This technique, which determines the probability of an outcome based on the relative frequency of observations, is a powerful tool for providing a useful quantitative uncertainty statement. 
	The overall or total measurement uncertainty (TMU) is the combination of many contributing influences. A list or a pie chart of fractional uncertainty contributions for a final result is conventionally called an uncertainty budget. When the uncertainty contributions (SDs) are independent and combined in quadrature, the information is often also presented in the form of the fractional variance. A few large uncertainty contributions typically dominate the TMU. If a lower TMU is needed to meet a particular data quality objective, the uncertainty budget identifies the best opportunities for improvement. These improvements are thus informed by the level of difficulty and resources required to deliver the greatest impact. However, when a particular method cannot meet a specific objective, a different technique may be needed. 
	A general requirement is that a measurement method should be both accurate (a qualitative term meaning close to the true but generally unknown value of the measurand) and precise (tightly grouped, small variance when the measurements are repeated). It must also meet the quantitative data quality objectives along with other relevant constraints. To this end, uncertainty quantification (UQ) is the process of quantifying the quality of a measurement result and is typically stated as a single numerical value. This value is the total measurement error SD and is a parameter that characterizes the spread or dispersion that can reasonably be attributed to the measurand (assuming that the result is subject to a normal distribution of errors). 
	The total error of the measurement, e, is usually abbreviated simply to “error” and defined as the signed quantity (measured value minus true). Algebraically this can be written as
	(1)
	𝑒=𝑥−𝜏,
	where 𝑥 is the measured value of the measurand, and 𝜏 is the (true) value of the measurand. This definition and mathematical formulation are clearly the most natural in the linear (additive) model but can also apply to the multiplicative model case. 
	A perfect measurement would return the true value each time. However, the true value of the measurand is never known. Indeed, the usual goal of the measurement process is to estimate the true value. However, in some cases, an item can be prepared (e.g., for calibration purposes or for performance testing) using methods with accuracy superior to those of the in-situ NDA measurement technique. In these cases, the value of 𝜏 may be considered as well known. Such accepted values, which may be established by superior analytical techniques or by convention, are sometimes referred to as conventional true values or nominal true values. Sometimes a particular value is adopted as a matter of convenience or by comparisons and such values are known as consensus values. Conversely, the causes of error can be positive or negative. Table 1 describes examples of each.
	Table 1. Potential causes of total error
	A direct determination of a quantity is rarely made. Instead, the measurement is usually the result of interpreting a response function. Uncertainty assessments of complex measurement systems and procedures often require subject matter expert professional knowledge, experience, and skill. The expertise of a professional statistician may also be of great value.
	Two important classifications of error are recognized: random and systematic. 
	Random variability in principle can be quantified by empirical statistical methods and can also be reduced by making repeat measurements. Precise measurements exhibit good reproducibility. Random error, er, of the measurement is the difference between the measured value, x, and the mean, 𝜆, that would result from an infinite number of measurements of the same quantity under repeatable conditions. Algebraically, this is represented as follows:
	(2)
	𝑒𝑟=𝑥−𝜆.
	However, systematic effects (such as operator-specific error and item-specific error) are persistent, consistent, and reproducible and cannot be revealed by repeated measurements. Certain drift mechanisms and system aging may fall into this category, depending on the time scale of the data collection. Systematic effects can cause even precise measurements to be inaccurate [e.g., far from the (true) value of the measurand]. Mathematically, systematic error, es, is defined as the difference between the longterm average of the measured value, λ, and the (true) value, (, of the measurand. Algebraically, this can be expressed as:
	(3)
	𝑒𝑠=𝜆−𝜏.
	Systematic error is used interchangeably with bias because it relates to a measuring instrument. Sometimes, systematic error is partitioned into short term, such as during one inspection period, or long term, such as during the entire data analysis period consisting of multiple inspection periods (Zhao 2010).
	When a systematic error can be identified (e.g., through analysis or intercomparison of methods), good practice is to try to minimize it by design and apply a suitable correction factor when possible. The remaining or residual systematic error then comes from the remaining uncertainty in the correction factor.
	Combining equations (2) and (3) leads to
	(4)
	𝑒=𝑥−𝜏=𝑥−𝜆+𝜆−𝜏
	or
	(5)
	𝑒=𝑒𝑟+𝑒𝑠.
	Although knowing either 𝑒𝑟 or 𝑒𝑠 (and therefore 𝑒) exactly is not possible, estimates of their typical magnitude can be made. A formal discussion on how to do this will be proposed later in the chapter but for now the results will be used. Let 𝜎𝑟 and 𝜎𝑠 denote the estimated random and systematic standard uncertainties (SDs), respectively. Assuming that the random and systematic effects are independent, the combined SD, 𝜎𝑐, can be evaluated from the quadrature sum: 𝜎𝑐≈𝜎𝑟2+𝜎𝑠2. Note that a contribution to the combined standard uncertainty is either classified as random or systematic depending on (or conditioned by) the intended use for the measurement result. For example, to another person the random uncertainty assigned to a nominal value of a calibration item may become a systematic uncertainty for measurements that rely on the resulting calibration. 
	Detailed UQ is usually undertaken at the measurement process-design stage. Comparison between design performance and routine or achieved performance can identify reasons for significant differences.
	The Guide to the Expression of Uncertainty in Measurement  (Chunovkina and Chursin 2001) defines two general types of uncertainty evaluation: (1) Type A evaluation is based on the statistical analysis of a series of observations; and (2) Type B evaluation is based on any means other than the statistical evaluation of a series of measurements, such as the following: 
	 using data taken from handbooks,
	 compilations and evaluated data files,
	 vendor specifications,
	 certificates and other reports, and
	 prior experience including previous measurement data. 
	Describing and reporting these contributions separately is good practice, although when evaluating the TMU on an individual item, they are combined without distinction (i.e., they are treated on the same probabilistic footing as Type A contributions). To do this, Type B uncertainties must be associated with an assumed probability density function (PDF). Therefore, for example, suppose the temperature coefficient of an instrument from type test data is provided by the manufacturer. The manufacturer may have used statistical methods, but this instrument was not part of that study, although it is assumed to be typical of the instruments that were. Assume that the manufacturer’s guidance is adopted and made use of in all assays. The value does not change, but it is not known perfectly. The manufacturer’s range of values is assumed to apply to the instrument, and a Type B uncertainty is added to the TMU. In doing so, the state of belief might be represented as a rectangular distribution or as a normal distribution to interpret the adopted variance and to develop CIs accordingly. This effect can be seen in the earlier description of how to estimate the combined standard uncertainty. In general, variances can be added, but when the underlying distributions are not all normal, then CIs will not necessarily correspond to those of a standard Gaussian PDF. Figure 3 shows a normalized Gaussian distribution function for various values of μ and σ. 
	The interpretation of measurement results is inherently probabilistic. Statistical methods and reasoning therefore underpin measurement science and UQ, even though UQ is neither a wholly mathematical nor wholly prescriptive undertaking. 
	The remaining sections of this chapter review key statistical concepts. Before moving on, take a moment to think of examples from your own experience.
	/
	Figure 3. Examples of a normalized Gaussian PDF for various values of μ and σ.
	2. DESCRIPTIVE STATISTICS
	When an item is measured repeatedly (under the same conditions, which we usually take to mean in close succession) or when an entire experiment is replicated (using different hardware, different operators, etc.), often a spread of results is observed. However, there will also usually be a clear single clustering of results (unimodal) with the chance (relative frequency) of extreme values that fall steeply the further away the value is from the main group. 
	Even though there is some spread, the measurement results can be concisely summarized using just a few numbers without making any assumptions about the shape of the underlying or parent frequency or the probability distribution (i.e., nonparametrically). Describing the results using just a couple of numbers is a considerable simplification compared to having to use the full list of results. Important sample properties can be described using statistics. A sample statistic is just the name given to both the value and to the function used to calculate it from the set of data, subject to some mathematical formalities—such as the form of the function does not depend on the particular sample. For example, summary statistics concisely express what the sample implies about the underlying population (which is usually too big to know fully) without the need to assume an underlying mathematical model. This is the nonparametric approach. 
	In contrast, a parametric approach involves interpreting the data within an underlying mathematical model, which is described by model parameters. Whether a model is appropriate should be checked before relying on it. The observed sample data is the only direct connection to reality. If good care was taken to collect good data and disagreement exists between the model and the data, then the model is possibly naïve. 
	The main things to quantify for a sample are known as LDPOT:
	 Location—the position of the data on a scale,
	 Dispersion—a simple measure of how good the number is,
	 Probability distribution function—a detailed description of all the possible outcomes,
	 Outliers—the data set consistent with the model, and
	 Trends—aspects measured by time, item category, operator, and so on that could confound interpretation.
	3. MEASURE OF LOCATION
	The mode, median, and range are used to describe the general location (with suitable units). In measurement science, the measure of location is the mean. This is also commonly referred to as a measure of the central tendency of the data. 
	Consider a list of n values of an independent random variable, X, the sample mean, 𝑥, is calculated as follows (the uppercase X denotes a random variable; the lowercase x denotes a realized value of X):
	𝑥=1𝑛∙𝑖=1𝑛𝑥𝑖.
	(6)
	Typically, the average is the best estimate (has the smallest average squared error) of the mean of the underlying population distribution. Every value is treated on the same footing and 𝑛∙𝑥 is the total amount “of stuff,” as is to be expected. As 𝑛→∞, the computed value 𝑥 tends to a constant, the mean of the underlying population distribution. 
	4. MEASURE OF DISPERSION
	The sample variance is the usual mathematical way to measure the spread, variability, or dispersion of the sample. The sample variance, s2, is defined as follows.
	𝑠2=1𝑛−1∙𝑖=1𝑛𝑥𝑖−𝑥2.
	(7)
	The factor 1𝑛−1 makes 𝑠2 an unbiased estimator of the population variance, which means that in repeated samples of size n, the average value of 𝑠2=𝜎2 (the “hat” denotes an estimator) is the true population variance 𝜎2. It can also be shown that 𝑠2 is the minimum variance unbiased estimator, which from a practical standpoint, means that it is efficient at approaching the population value. Again, as 𝑛→∞, intuitively it can be seen that 𝑠2 converges to a constant value characteristic of the underlying complete population. 
	The sample SD is called 𝑠 (=+𝑠2≥0). 
	The sample standard error is 𝑠𝑒=𝑠𝑛. 
	The term standard error was originally defined by the British statistician George Udny Yule (1871–1951), who laid the origins for his work in an 1899 paper on the causes of pauperism in England (Yule 1899). See An Introduction to the Theory of Statistics (1911) to gain insight into how statistical theory was approached at that time.
	Standard error is important because it is a measure of the random error in a sample statistic, such as a mean. Such statements make sense because sample statistics behave randomly similar to the way individual measurements do. Whereas the sample SD is a measure of the dispersion of an individual repeat value, the standard error of the mean 𝑠𝑒=𝑠𝑛 is a measure of the dispersion on the sample mean of the reported estimate of the measurand. A simple and powerful fact is that the variability of the sample mean across hypothetical or real replicates of obtaining a sample of size 𝑛 can be predicted quite well by the sample 𝑠𝑒.
	As discussed earlier, a pivotal quantity, or pivot, is a random variable defined by a function of (sample) observations and unobservable (population) parameters with the property that its probability distribution function does not depend on the unknown (population) parameters. We now introduce the pivotal quantity 
	𝑡=𝑥−𝜇𝑠𝑛,
	(8)
	which, for a normal population, is distributed with a student’s t-distribution with 𝜈=(𝑛−1) degrees of freedom (df). This fact allows CIs to be placed around 𝑥, having a given probability of containing the true but unknown value of 𝜇, the mean value of the underlying population that is being estimated. Notably, however, this is important when adopting results stemming from any parametric model that the conditions under which the mathematical model applies are appropriate for the given data set. This can often be difficult to do, and so may often just be a guess. 
	In inferential measurement science, what is reported as a form of shorthand, 𝑥, is the best estimate result of the measurement and 𝑠𝑛 as the optimal statement of the associated measurement uncertainty of the sample mean statistic. Extra information, such as the number of df, may be needed by a user of the reported values, 𝑥±𝑠𝑛, to properly interpret what it means in a way that is fit for their intended purpose. 
	Descriptive statistics describe the data. Inferential statistics make inferences or predictions from the data. This includes estimating parameters for the population, which is a generalization from the sample, and hypothesis testing.
	This presentational form for 𝑥±𝑠𝑒 must be treated carefully, especially when results are reported with expanded standard uncertainties. CIs are revisited in the following section after discussion of the Central Limit Theorem. Often, a normal distribution can be used to describe the central region of the probability distribution of the measurement outcome, and a standard uncertainty value, u, is derived such that user-specified confidence exists that the true value will be within ±𝑢 of the measured result. 
	The relative standard error, 𝑟𝑠𝑒=𝑠𝑛𝑥, can be quoted either as a fraction or as a percentage. Beware! Sometimes the context and traditional relative SD may be used to describe the same thing. For a population, 𝛿=𝜎𝜇 is referred to as coefficient of variation, although its use in NDA is not widespread. 
	Example: Suppose a sample of size n=3 comprises the numbers 1, 2, 3 with units of kg. The principal sample statistics are as shown in Table 2.
	Table 2. Sample statistics.
	𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏=𝒙𝒊−𝒙, 𝒌𝒈
	Index, i
	𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏𝟐, kg2
	𝒙𝒊, kg
	1
	-1
	1
	1
	0
	0
	2
	2
	1
	1
	3
	3
	𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛, 𝑥=1+2+33=2.00 kg.
	Notably, the sum of deviations about the sample mean is zero, as it should be. (Exercise: Starting with (17.6), show that the sum of the deviations about the sample mean by definition is equal to zero.) The mean is intuitively gratifying because it is easy to appreciate. For example, potatoes to make a stew are sold by weight, not by piece. For making a stew, no difference exists between purchasing three average potatoes of 2 kg each or a sampling of three potatoes weighing 1, 2, and 3 kg at the grocery store. 
	𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝑠2=𝑠𝑢𝑚 𝑜𝑓 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠 𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑛−1=22=1.00 kg2.
	𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 𝑠=+𝑠2=1.00 kg.
	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟, 𝑠𝑒=𝑠√𝑛=1√3≈0.58 kg.
	Other defensible ways to estimate the dispersion of the result exist, given the limited experimental data. 
	The premise of the bootstrap method is that each of the three results is equally likely. Thus, data sets can be constructed from the original data purely for the purpose of estimating variability through the process of sampling with replacement. The first of the three draws can be 1, 2, or 3, the second of the three draws can be 1, 2, or 3, and so on. This gives 27 (33) possibilities, and the SD of the mean for each of the 27 cases (which is 0.48) provides an estimate of the standard error of the original data set. For larger data sets, such as 𝑛 = 100 instead of 𝑛 = 3, far too many possibilities exist to enumerate, so one simply computes a reasonable number such as 1,000 bootstrap samples of size 100. The true variance is unknown in this case, so determining whether 0.58 is a better standard error than 0.48 is not possible.
	The jackknife technique is a scheme based on rejecting each data in turn (Miller 1974).
	In reporting numerical values, the dilemma arises of knowing how many significant figures to use so that rounding errors (in either the mean or SD or both) do not introduce significant errors when the results are subsequently used in other calculations (for instance, in a weighted mean of values).This is especially true when the uncertainty in the SD can be large. Implying greater confidence in the results than can be justified would be bad practice. However, as noted earlier, reporting the SD to at least two digits and using it to define the least significant figures of the measurand are recommended. For example, (9.81±0.41) and (10.08±0.67) abide by this recommendation. Dean 2008 provides arguments for supporting this practice (Dean 2008). To summarize, usually giving the uncertainty to two significant figures and the results reported to match resolution are recommended, for example, (1.953±0.028) kg, which is also commonly written as 1.95328 kg.
	Sidebar 1. EXAMPLE
	Fabrication techniques for a 16 × 16 pixelated array detector are being developed. A batch (sample size, 𝑛) of 256 sensors was tested and 17 were found to be defective. The estimated probability of a defective element is therefore 𝑝=17256≈0.0664. The theoretical SD of this estimate is 𝑠𝑒𝑝=𝜎𝑛=𝑝1−𝑝𝑛, but because 𝑝 is unknown, the expression is evaluated using the experimentally estimated (sample) value 𝑝. Thus:
	The estimated proportion of defective sensors for this production process based on this one sample is therefore (6.6±1.6)%, where the uncertainty indicates the approximate 68% CI (this would conventionally be called the margin of error in the context of a political poll intended to estimate a simple proportion statistic). The quantiles of the pivotal t statistic should provide a betterquality CI. However, in this case, n = 256 is so large that the quantiles of the t are essentially the same as the quantiles of the Gaussian. CIs for ratios is a separate topic in itself (Agresti 1998).
	Of course, if these results had been obtained from successive repeated measurements, the difference in the estimates in the SD might be attributable to chance alone. Taking a simple average rather than a weighted average is likely to be the more appropriate thing to do. In other words, some judgment may still be needed to interpret the data. 
	5. CENTRAL LIMIT THEOREM
	In a scheme that is cleverly known as “the method of moments,” the sample mean and sample variance are statistics used as estimates for the corresponding properties of the underlying population of events. Consequently, 𝑥 and 𝑠 are themselves random variables and can also be sampled and studied. Suppose the underlying population of possible values has a mean and variance of 𝜇𝑝 and 𝜎𝑝2, respectively. Then, one form of the Central Limit Theorem states that if many samples of size 𝑛 are obtained from a much larger population, 𝑛𝑝≫𝑛, then the expectation value (long-term average) of the sample mean and the expectation value of sample variance are given by
	(9)
	𝜇𝑥=𝜇𝑝,
	and
	𝜎𝑥=𝜎𝑝𝑛,
	(10)
	where 𝜎𝑥 is called the standard error of the sample mean and describes how the variation in the sample mean is less than the variation in individual values. Further, for large 𝑛 (≳25), 
	𝑥∻𝑁𝜇𝑝,𝜎𝑝2𝑛,
	(11)
	which should be interpreted as the sample mean is approximately distributed as a normal (i.e., Gaussian or Laplace-Gauss) distribution (PDF) with mean 𝜇𝑝 and variance 𝜎𝑝2𝑛. 
	The Gaussian distribution has a characteristic symmetric bell shape with the following mathematical form, which proves to be especially convenient to work with shown mathematically:
	𝑔𝑥∣𝜇,𝜎2 ∙𝑑𝑥=1𝜋∙𝑒−𝑥−𝜇2𝜎2∙𝑑𝑥2𝜎,
	(12)
	where 𝑔𝑥∣𝜇,𝜎2 ∙𝑑𝑥 is approximately the probability that the value of the random variable will be in the incremental interval of width 𝑑𝑥 about 𝑥. The exact probability is the integral of 𝑔𝑥∣𝜇,𝜎2  from 𝑥− 𝑑𝑥 to 𝑥+ 𝑑𝑥. See Figure 3 for a graphic representation. 
	Note that 𝑔(𝑥) is a twoparameter function of a real continuous variable. The mean is 𝜇 (−∞<𝜇<∞), and the variance is 𝜎2 (𝜎2>0). The integral under the curve is unity because the distribution is a true normalized PDF. The fractional area under the curve between two boundaries, Pr𝑎≤𝑥≤𝑏=𝑎𝑏𝑔(𝑥)∙𝑑𝑥, is the probability that the value will take on a value between the boundaries. 
	Sidebar 2. PRACTICE
	Noise that Can Cause Measurement Results to Scatter
	1. What are a few examples of noise that can cause results to scatter?
	2. Generate a sample with each value being synthesized by adding independent random variables drawn from different distributions. For example, toss a coin 20 times. Assign 1 to heads and 0 to tails and record the totals for all 20 tosses. A histogram would show a somewhat bellshaped spread even though the “things” that are summed came from non-normal distributions.
	This problem is treated similarly in the discussion on the binomial distribution for nuclear counting. The binomial distribution also describes the number of defectives in the example above involving fabrication techniques for a 16 × 16 pixelated array detector.
	In another Central Limit Theorem example, the sum of random variables with finite variance leads to the emergence of a normal distribution. For making measurements, many sources of influence cannot be controlled, fluttering on a short timescale from one measurement to the next and contributing to the inherent variation in the measurement result. Therefore, treating measurement variability is quite common, assuming that a normal distribution adequately describes at least the central region (>95%) of outcomes. 
	6. NUCLEAR COUNTING EXPERIMENTS
	Imagine that a number, 𝑛, of nuclei each has a fixed probability, 𝑝>0, of decaying and being detected in a time period, 𝑡. Let the probability of detection 𝑝 be called the probability of success and the probability of not being detected, 𝑞=(1−𝑝), be called the probability of failure. With 𝑛 fixed and 𝑝 fixed (each nucleus behaves independently) the complete probabilistic summary of possible outcomes is described by the discrete binomial distribution, 𝑏(𝑘∣𝑛,𝑝), 0≤𝑘≤𝑛, stemming from the n-independent Bernoulli trials. Thus, the following can be written:
	𝑝+𝑞𝑛=1=𝑘=0𝑛𝑛!𝑘!𝑛−𝑘!𝑝𝑘𝑞𝑛−𝑘=𝑘=0𝑛𝑏(𝑘∣𝑛,𝑝), 0≤𝑘≤𝑛
	(13)
	There are various notations for the binomial coefficients 𝑛𝑘=𝑛𝐶𝑘=𝑛!𝑘!𝑛−𝑘!, which is to be read as “n choose k,” and gives the number of combinations or choices of k successes from n attempts with the order of the arrangement being unimportant. The values of the binomial coefficients are familiar from Pascal’s triangle [Exercise: write out Pascal’s triangle now]. The form of the binomial distribution and how to generalize it can be visualized by thinking about a coin-tossing experiment. The outcomes of a single coin toss are heads or tails (H or T, respectively). The outcomes of two coin tosses (H+T)(H+T) are HH, HT, TH, TT, which can be mathematically codified as
	“1∙𝐻2∙𝑇0+2∙𝐻1∙𝑇1+1∙𝐻0𝑇2,”
	and so on by repeated multiplication and collection of combinations. In this case, the power of H gives the number of heads, and the coefficient gives the frequency. Setting H = T= 1/2 returns the probability (or alternatively one can normalize the outcomes) [Exercise: work through this example now and extend to three coin tosses. Note: There are some good videos on-line of the quincunx machine that also illustrates the point.] The mean and variance of the binomial distribution are 𝑛∙𝑝 and 𝑛∙𝑝∙1−𝑝, respectively. Notably, as 𝑝→0, the numerical values converge. 
	Sidebar 3. THE BINOMIAL, POISSON, AND GAUSSIAN DISTRIBUTIONS
	The probability that off-site electrical power will be lost at a nuclear facility is estimated to be constant at 0.43/year. Over the 40-year operational life of the facility, what is the probability that off-site power will be lost at least once? 
	Hint: Work with the complementary event.
	Answer: The probability that power will be lost one or more times after 40 trials is being sought. This is equal one minus the probability that power will never be lost and is given by
	1−𝑝(0)=1−1−0.04340≈ 0.172.
	Under almost all conditions of practical interest, the binomial distribution can be mathematically recast by letting 𝑛→∞, 𝑝→0, 𝜇=𝑛∙𝑝=constant, and 𝜎2=𝑛∙𝑝∙(1−𝑝)→𝜇, resulting in the Poisson distribution. The Poisson distribution can be derived as a basic distribution in its own right (e.g., to describe the sporadic annual number of deaths in the Prussian cavalry from horse kicks). For example,
	𝑝𝑘𝜇=𝜇𝑘∙𝑒−𝜇𝑘!, 0≥𝑘𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑙𝑢𝑒≤∞,
	which is much simpler to deal with than the binomial. Note that the Poisson distribution is discrete and is fully specified by only a single parameter, the mean, 𝜇 a real number >0, and 𝜎2=𝜇. Experimentally, this is an extremely important point because it means that from the result of a single nuclear counting experiment (“count”), one can obtain (through a mathematical process known as inversion which will not be covered here) both an estimate of the mean (𝜇=𝑁+1) and from it also of variance (𝜎2=𝜇). Hence, one can make a quantitative estimate of the “counting statistics” reliability of the result. The Poisson distribution is the fundamental distribution of nuclear counting. When 𝜇 is small, the distribution is highly skewed toward small values of 𝑘. However, as 𝜇 becomes larger, the distribution becomes more symmetrical and gradually morphs into the shape of a Gaussian function 𝑔𝑘∣𝜇,𝜇  that is
	lim𝜇→∞𝜇𝑘∙𝑒−𝜇𝑘!≈𝑘−0.5𝑘+0.51𝜋∙𝑒−𝑥−𝜇2𝜇2∙𝑑𝑥2𝜇≈𝑔𝑘∣𝜇,𝜇 ∙1=𝑒−𝑘−𝜇2𝜇22𝜋𝜇, 𝑘(𝑖𝑛𝑡𝑒𝑔𝑒𝑟)≥0.
	For describing the central part (e.g., 95%) of the discrete Poisson distribution in nuclear counting experiments, the Gaussian approximation becomes “reasonably good” for 𝜇≳15, with some flexibility, depending on the application. 
	Suppose 1 g of 235U exists that is ~1235.04 g/mol∙6.0221×1023atom/mol ~2.56×1021 atoms. The half-life of 235U is 703.8(5) × 106 years (Chadwick et al. 2011), which corresponds to a probability for a given nucleus to decay per s [i.e., 𝜆=ln2/(2.22×1016 s)] of approximately 3.1212×10−17. To illustrate the concept, suppose the probability of emitting a 185.7 keV photon is 0.570(6), the probability of the photon escaping the object is 0.6, the solid angle probability of striking a detector is 0.045, and the probability that the photon will fall into the set energy-deposition region of interest is 0.25. For a 1,000 s observation period, the probability of a successful detection is of the order of 1.2×10−16. This verifies that the approximation of small probability is confirmed. Therefore, the variance is numerically equal to the mean, and the binomial distribution may be replaced by the Poisson distribution for nuclear counting examples. 
	Consequently, almost all NDA assessments of detection limits, CIs, and so on make use of the Gaussian approximation. This Gaussian approximation results in considerable technical simplification in combining and reporting measurement uncertainties but is not always a wholly satisfactory approach. However, for the rest of our discussion we shall assume that it is! 
	To illustrate using the Gaussian approximation in nuclear counting experiments, suppose 1,618 events are recorded over a 60 s interval in a region of interest—the pulse height spectrum. The best estimate of the count rate is 1,61860~26.97 counts per sec (cps). The associated SD is 161860~0.67 cps, and one would traditionally report the result as 26.97±0.67 cps with a statement to the effect that the uncertainty is counting precision at the 1σ level. This is equivalent to specifying that the coverage factor is unity (“k = 1”). The assumption that the distribution is being approximated by a normal distribution (with infinite df) derived from integer values is usually implicit from the context and common use.
	Suppose that no events (𝑁=0) are observed in a given Poisson experiment. Then, is it reasonable to assign an expected mean of zero with zero variance, which implies perfect knowledge? However, intuitively, this seems wrong. From a single observation of random behavior (it should be obvious) that full and complete knowledge cannot be attained. There are technical arguments in general (related to inversion on maximum likelihood with a flat prior) for using mean=variance=(𝑁+1). This discussion has avoided the complication of small numbers by requiring 𝑁 to be sufficiently greater than zero. 
	7. CONFIDENCE INTERVALS
	The most complete way to communicate the confidence in a measurement is to provide an estimate of the complete probability distribution function (PDF) along with the estimated value. In cases where the PDF can be approximated by a normal distribution one, common convention is to report the value along with an error bar of plus and minus one SD of the normal distribution. Recall that for a normal distribution, the mean and SD fully define the PDF. Whenever data are presented in this style, it is important to clearly state what convention (e.g., plus and minus one standard error) and other assumptions (e.g., normality) are being made and what other information is needed (e.g., sample size or effective degrees of freedom (df)) to interpret the uncertainty statement. The number of degrees of freedom is an important concept that will not be explored in detail here. But it is related to the fact that if one calculates the mean from a sample then there is only freedom to write (n-1) results because given these and the mean the nth result can be calculated. Thus, factors of (n-p), where p is the number of derived parameters, often appear in statistical formulae.  
	The standard error calculated from a sample data set is itself a statistic or estimator, so it can legitimately be asked what is the “uncertainty in the uncertainty.” This can be framed in a very general way, but here only the result for the normal distribution is quoted in a somewhat stylized way:
	𝑥±𝑠𝑛∙1±12𝑛−1.
	(14)
	We see that the fractional uncertainty in the uncertainty is of the order of 12(𝑛−1). It takes a sample of size 𝑛=51 before this factor reduces to 10%. (For a sample of 𝑛=6, it is about 32%, a magnitude that in a different context could be thought of as a detection limit.) Although one is not usually interested in the value of 𝑠𝑒=𝑠𝑛 per se, only in how it helps express confidence in the estimated location result, this serves as a reminder that statistical estimates are not exact. Sometimes statistical estimates may be rather crude. The variance depends on the square of deviations, so large deviations contribute more. As a consequence, the variance will then scatter more, and so it requires more data points to locate it precisely.
	Given the sample’s statistics 𝑥 and 𝑠𝑛, it is only natural to ask how confident one is in the true but unknown population mean, 𝜇, that lies within some interval about the sample mean 𝑥. Recall that for a normal distribution, the pivotal quantity 𝑡=𝑥−𝜇𝑠𝑛 is distributed according to a student tdistribution with (𝑛−1) df (here occurs a slight abuse of notation to use the lowercase “t,” because lower case denotes a realized value and not a random variable; the right-hand side terms are lower case.) From this example, it can be shown that the 100∙1−𝛼% two-sided CI for 𝜇 can be expressed as
	𝜇=𝑥±𝑡𝑛−1, 𝛼2∙𝑠𝑛.
	(15)
	Values of 𝑡𝑛−1, 𝛼2, the coverage factors for students t-distribution (“t-distribution table of two-sided critical t values”), can be generated in Microsoft Excel using the function call 𝑇𝐼𝑁𝑉(𝛼,𝑛−1). 
	For example, suppose a sample of six data points exists, and a 95% CI is desired (which is a common but arbitrary choice). 
	In this case, 𝜈=(𝑛−1)=5, 𝛼=0.05, and the expanded uncertainty becomes ≈2.57∙𝑠𝑛. In contrast, in the limit 𝑛−1→∞, and the sample become truly representative of a normal, the multiplier tends to ≈1.96. The 95% confidence level is an arbitrary but commonly encountered choice. At this level, the probability (in a frequentist sense over many such CIs) of the true value falling outside the range is still 120. 
	In other words, the actual meaning of the CI is somewhat different from the usual (mis)interpretation given above. In the usual interpretation, a CI of 95% is thought of as containing the true value with a probability of 95%. However, statistically what it means is that if the same CI construction method were applied many times, then 95% of the experimental CIs would include the true value. This is an important distinction when CIs are estimated through simulation, for example, by Monte Carlo sampling of the physical behaviors of a system. Strictly speaking, from a Bayesian perspective, one does not interpret a frequentist CI conditional on the data. Rather, a CI construction procedure is characterized by the coverage probability (whether the true values lies in the CI) over many similarly constructed intervals.
	8. CONFIDENCE INTERVALS FOR A SINGLE POISSON OBSERVATION
	For a single observation (sample size of 𝑛=1) for which the result is k counts collected from an assumed Poisson distribution with mean μ, an “exact” CI for μ with a confidence level (1-α) is given as
	12𝐼𝑛𝑣_𝜒2𝛼2;2𝑘≥𝜇≤12𝐼𝑛𝑣𝜒21−𝛼2;2𝑘+2,
	(16)
	where 𝐼𝑛𝑣𝜒2𝑥,𝜈 is the inverse of the left-tailed probability of the chi-squared distribution.
	Because the number of counts must be an integer, the conservative approach is to round the lower limit values down and to round the upper limit values up.
	The chi-squared distribution, 𝜒2𝑥,𝜈, with 𝜈 df for the variable 𝑥, has the form
	𝜒2𝑥,𝜈=12𝜈2∙𝛤𝜈2∙𝑥𝜈2−1∙𝑒−𝑥2,
	(17)
	where 𝑥 is a real positive number, 𝜈 is a positive integer greater than or equal to one, and 𝛤𝑧 is the gamma (factorial) function defined by Euler’s Integral (Abramowitz 1968) [Note that, for 𝑧=𝑚, and integer value, the form needed for this problem is 𝛤𝑚=(𝑚−1)!].
	Although this result is well known in the statistical community, these confidence limits are rarely applied to nuclear counting in practice. For example, they are not applied to a curve-fitting algorithms used in gamma-ray spectroscopy. Instead, the normal approximation is typically invoked. The practical benefit of this simplification is even greater when the difference of two count distributions is considered (signal equals gross counts minus background). Formally, the difference of two independent Poisson random variables has a Skellam distribution.
	9. TECHNIQUE SELECTION AND INSTRUMENT DESIGN
	Several complementary methods and multiple physical realizations may be available to measure items of a given type and character. An appropriate selection of method and instrument that balances the conflicting objectives requires critical thinking and should involve the collective experience of the whole team.
	10. CALIBRATION
	Calibration is the procedure to establish the causal relationship between a measurand, the predictor variables, and other quantities (e.g., mass-deflection, energy-channel, and volume-level). In the simplest case, calibration establishes proportionality under controlled conditions. Thus, calibration can be established from the response to known reference items or standards or it can be established through comparison against an accepted standard instrument. 
	The items used for calibration must be traceable to internationally or nationally recognized standards through an unbroken chain of comparisons. International and national standards are the top tier of standards, but they are few and must be diligently maintained. As one progresses down the hierarchy of standards to the primary, secondary, and working levels, the uncertainty generally expands as the comparison uncertainty incurred at each stage contributes to the total uncertainty. In general, however, the accuracy of the calibration standards should still be small (1/3 is a common rule of thumb) compared to the overall calibration uncertainty goal. 
	Calibration requires both careful planning and careful execution by trained and experienced personnel who understand the measurement instrument, the basis of the assay technique, and what has to be done to obtain a calibration that meets the data quality objectives and why, including the consequences of taking liberties with the procedure. Known items that represent the unknowns to be assayed are commonly used. Special attention to blanks (background) and interferences is required. The following practices are crucial to establishing and maintaining a credible calibration free from unidentified systematic uncertainty that does not show up in repeat measurements on a reference item:
	 Cross calibrations,
	 Participation in interlaboratory comparisons,
	 Round-robin exercises,
	 A robust quality control program, and
	 Regular performance demonstration measurements. 
	A written calibration procedure usually includes sections covering the following: 
	 Purpose, scope, definitions, and references;
	 Attachments, equipment, and materials required;
	 Safety, prerequisite conditions, test procedure; and
	 Recording templates, acceptance criteria, approvals. 
	The frequency and accuracy objectives of a calibration depend on the importance of the data being generated and the consequence an error. Measurement control is also used to maintain tolerances and provide ongoing estimates of error SDs. Individual sensors as well as system-level performance can be subjected to calibration and measurement control. Initial factory calibrations are often replaced in whole or in part by field calibrations performed in situ to correctly incorporate the conditions of actual assays.
	The calibration procedure may often be witnessed by independent experts to ensure honest execution, attention to detail, and integrity of reporting. Excellent documentation is crucial because, in addition to conveying quality to the client, it is the only evidence that calibration was done as intended. The calibration report also provides a way to record pertinent observations or changes occurring during field work. 
	The simplest calibration is that for a proportionate (linear through the origin), physics-based response function performed using a single calibration item. An example is when the Enrichment Meter Principle (EMP) is used to determine the attribute 235U enrichment (235U:totU atom %) of a homogeneous compound under fixed geometry using a collimated high-resolution gamma-ray spectrometer. In this case, the net full-energy peak area counting rate 𝐶 of the combined 182.6 + 185.7 (both lines come directly from 235U) keV gamma-lines is obtained using a three region-of-interest algorithm, and the rate, 𝐶, varies in direct proportion to enrichment, 𝛼. Calibration usually occurs within the causal relationship (rather than the inverse) and so
	(18)
	𝐶=𝑝∙𝛼,
	where 𝑝 is the calibration model parameter (constant of proportionality) with units, in this example, of 𝑐𝑝𝑠/(𝑎𝑡𝑜𝑚 %). With a single well-known calibration item with nominal value 𝛼𝑜 (e.g., mass spectrometry is far more accurate than the field application of the Enrichment Meter Principle when continuum, peaked background, rate, wall, and other corrections are considered), one can write
	𝑝=𝐶𝑜±𝑢𝐶𝑜𝛼𝑜,
	(19)
	where the subscript refers to the calibration values, and 𝑢𝐶𝑜 is the estimated uncertainty in 𝐶𝑜, usually at the notional 68.26% confidence level (1σ-value for a normal distribution with an infinite number of df). A more conventional notation would be: 𝑝=𝐶𝑜𝛼𝑜 with an approximate 68% CI given by 𝑝±𝑢𝐶𝑜𝛼𝑜. Multiple conventions and traditions are often encountered in applied measurement statistics and physical scientists often rely heavily on context to clarify meaning, so be prepared to encounter a variety of styles in the literature.
	In this special case, when an unknown item is measured, the assay value has the character of a direct relative determination. The expression for approximately 68% CI for 𝛼 is given, according to the method of Propagation of Variance (PoV) which we’ll describe in detail later, by (assuming 𝑢𝑐 is the estimated uncertainty in 𝐶)
	𝛼=𝐶𝐶𝑜∙𝛼𝑜±𝛼∙𝑢𝐶𝐶2+𝑢𝐶𝑜𝐶𝑜2,
	(20)
	where uncertainty in 𝛼𝑜 is being neglected for the purposes of this illustration. If any other corrections are made, the previous comment about notation applies. The assigned uncertainty becomes clear after the discussion of how to combine uncertainties. However, the fractional uncertainty on 𝐶𝑜 is required to be sufficiently small so that zero or negative values are not credible. 
	Most calibrations are much more involved than this simple example because the measurement procedure involves many steps, the number of model parameters is larger, and more calibration items covering the full operational dynamic range are included. In addition to a slope, the response model may also require an intercept and nonlinear behavior (hysteresis is a special case because often a calibration is checked as calibration values increase and then decrease). A calibration is usually considered valid only between the lower and upper values of the calibration items used to avoid extrapolation. Items are included between these bounds to demonstrate smooth, predictable behavior or to establish some other interpolation scheme and associated tolerances. 
	All measurements performed using a given instrument over a given calibration period are correlated through the common estimated calibration parameters. If the same calibration reference items are used each time, a longer-term correlation exists. In evaluating aggregate values, this correlation needs to be recognized and included in the UQ assessment by including the covariance uncertainty structure of individual results or by writing the overall measurement equation explicitly in terms of the predictor variables. This is discussed more as in Section 12, Combining Uncertainties.
	11. MEASUREMENT CONTROL
	To ensure that the measurement process is maintained within an acceptable tolerance (i.e., is within measurement control) the general methods of statistical process control first introduced by Walter A. Shewhart can be applied. The basic method monitors performance using control charts maintained through check standards that are regularly measured by the process. A word of caution here is that such checks do not capture item-specific biases but only monitor that repeatability variance is under control and stable.
	Each attribute chosen for tracking will typically be charted for value, range, and SD using the so-called X-, R-, and S-charts. For radiation measurements, random error variance is often estimated by dividing the acquisition time into a sequence of shorter intervals that can be analyzed statistically. For other kinds of sensors, repeat measurements or a short run of measurements might be used to update the S-chart. Observations over an extended setting to work period establish the initial variability. These are the baseline data. Later, if fluctuations occur outside of what seems reasonable given this history, alerts can be issued. A typical criterion are the Western Electric rules (Western Electric 1956). The following articles by Brian Lanning are also clear and accessible (Lanning 1995, 1998). 
	12. COMBINING UNCERTAINTIES
	12.1 ADDITIVE ERROR MODEL
	12.2 MULTIPLICATIVE OR PROPORTIONAL ERROR MODEL
	12.3 PROPAGATION OF VARIANCE
	12.4 COVARIANCE
	12.5 LINEAR ALGEBRA

	The starting point is the measurement equation. The most common approach is to linearize the functional dependence on each of the predictor variables about their mean values and to use a result of applied statistics called propagation of variance (PoV). 
	Recall when tractable, bootstrap and Monte Carlo sampling provide intuitive alternatives to estimate PDFs without having to know much about applied theoretical statistics. Monte Carlo sampling also allows discontinuous response functions (e.g., logic involving decision trees) to be easily studied. 
	Before discussing the PoV, two basic idealized error models are introduced— the additive and multiplicative error models. However, in practice, a mix of measurement models is common. 
	The additive error model can be defined as
	(21)
	𝑥𝑖=𝑥𝑡+𝜀𝑖+𝑏𝑖,
	where 𝑖 is the index of the datum, 𝑥𝑖 being the ith data point of a sample, 𝜀𝑖~𝑁0,𝜎𝜀2 is an independent random variable with an expectation value of zero but finite variance, and 𝑏𝑖 is an item-specific constant (deterministic) bias also commonly called the systematic error. Both 𝜀𝑖 and 𝑏𝑖 have the same units as 𝑥𝑡. Note on the average 𝑥𝑖→𝑥𝑡+𝑏𝑖. The value of 𝜀𝑖 can take on any real value positive or negative, although large deviations from zero are rare (as governed by the variance 𝜎𝜀2).
	One form of the multiplicative error model can be defined as
	(22)
	𝑥𝑖="𝑒𝛿𝑖+𝑐𝑖∙𝑥𝑡"≈1+𝛿𝑖+𝑐𝑖∙𝑥𝑡,
	where 𝑥𝑖 is the ith item, small changes are assumed, 𝛿𝑖~𝑁0,𝜎𝛿2 is an independent normal random variable, and 𝑐𝑖 is an item-specific constant (deterministic) bias or systematic factor. In this mode, both 𝛿𝑖 and 𝑐𝑖 are dimensionless numbers, just simple multiplicative factors. Note that on average 𝑥𝑖→1+𝑐𝑖∙𝑥𝑡. The natural definition of error in the multiplicative model is the ratio measured to true.
	The multiplicative model can be approximately transformed (provided that the total relative error SDs are approximately 10% or less) into a linear model in terms of transformed variables as follows: ln(𝑥𝑖)=ln⁡(𝑥𝑡)+𝛿𝑖+𝑐𝑖. The reason why we chose 𝑒𝛿𝑖+𝑐𝑖 in defining the multiplicative model is now clear – it leads to a linear simplification when the natural logarithm is taken. A more general multiplicative error model, 𝑥𝑖=𝑒𝛿𝑖+𝑐𝑖𝑥𝑡𝑑𝑖, also has a simple logarithm transform: ln(𝑥𝑖)=𝑑𝑖ln⁡(𝑥𝑡)+𝛿𝑖+𝑐𝑖. It is always instructive to review data graphically and one way to identify whether the error model is additive or multiplicative in nature is to look at the calibration results 𝑥𝑖 𝑣𝑠. 𝑥𝑡 in lin-lin and ln-ln space. For the calibration data reference or accepted values take the place of 𝑥𝑡. 
	Sidebar 4. PRACTICE
	Evaluate the variance in the measured value for these two models.
	The method to combine uncertainty in the case of a well-behaved relationship is reviewed in this section. Consider the measurement equation
	(23)
	𝑦=𝑓𝑥1,𝑥2,
	which expresses mathematically that 𝑦 is a function of the two variables 𝑥1 and 𝑥2. The measurement equation is the mapping relationship between the observables and other information into the quantity (or quantities) of interest. In general, the algorithm can also involve logic that introduces discontinuous threads, but here simple smooth behavior is assumed.
	Over some small region about the point 𝑥1,𝑥2, assume that one can linearize the relationship in the form of a first-order Taylor series approximation. That is, use this approximation:
	𝑦=𝑓𝑥1,𝑥2+𝜕𝑓𝜕𝑥1(𝑥1,𝑥2)∙𝑥1−𝑥1+𝜕𝑓𝜕𝑥2𝑥1,𝑥2∙𝑥2−𝑥2,
	(24)
	where the subscript on the partial derivatives (gradients, slopes, or sensitivity) terms emphasizes that they are to be evaluated at the point (𝑥1,𝑥2) where each of the variables is set to its estimated mean value. 
	One can also estimate the partial derivatives numerically as follows.
	𝜕𝑓𝜕𝑥1(𝑥1,𝑥2)≈𝑓𝑥1+𝜎𝑥1,𝑥2−𝑓𝑥1−𝜎𝑥1,𝑥22∙𝜎𝑥1,
	(25)
	with a similar expression for 𝜕𝑓𝜕𝑥2(𝑥1,𝑥2). 
	The question of how to form the expectation value over all possibilities of the controlling input variables is straight forward because in the linear approximation, 𝐸𝑦=𝑓𝜇1,𝜇2, and the estimator 𝑦=𝑓𝑥1,𝑥2 is defensible because 𝐸𝑥1=𝜇1 and 𝑥2=𝜇2. Thus, the deviation becomes
	𝑦−𝑦=𝜕𝑓𝜕𝑥1∙𝑥1−𝑥1+𝜕𝑓𝜕𝑥2∙𝑥2−𝑥2,
	(26)
	where the subscripts on the partial derivatives are now implied. 
	Now suppose that knowledge of both 𝑥1 and 𝑥2 come from a sample data of equal size 𝑛. Then one can square and average the deviation to obtain the variance in the measurement results to obtain the fundamental PoV result, according to the linear approximation of the measurement equation, 
	𝜎𝑦2=𝜕𝑓𝜕𝑥12𝜎𝑥12+2𝜕𝑓𝜕𝑥1𝜕𝑓𝜕𝑥1𝑐𝑜𝑣𝑥1,𝑥2+𝜕𝑓𝜕𝑥22𝜎𝑥22,
	(27)
	where sample estimates of the standard errors in the means and the standard covariance of the means (i.e., the best estimates for the uncertainty structure of the underlying population) are given by:
	𝜎𝑥12=1𝑛(𝑛−1)𝑖=1𝑛𝑥1𝑖−𝑥12
	𝜎𝑥22=1𝑛(𝑛−1)𝑖=1𝑛𝑥2𝑖−𝑥22
	(28)
	𝑐𝑜𝑣𝑥1,𝑥2=1𝑛𝑛−1𝑖=1𝑛𝑥1𝑖−𝑥1𝑥2𝑖−𝑥2=𝑟𝜎𝑥1𝜎𝑥2=𝑐𝑜𝑣𝑥2,𝑥1.
	The linear correlation coefficient 𝑟 lies in the interval [-1, +1] and is a convenient measure of the strength of the linear correlation between the pair of variables. Whether 𝑟 differs from zero (no correlation) by a statistically significant amount requires a hypothesis test which will not be discussed here but note that visualization of the data, as well understanding any causal relationship within and between the data, is extremely important. 
	If a pair of random variables 𝑥1 and 𝑥2 are truly independent, then the expected value of 𝑐𝑜𝑣𝑥1,𝑥2=0 because a change in one of the values means nothing to the other. Put another way, for independent random variables, 𝐸(𝑥1−𝑥1)∙(𝑥2−𝑥2)=𝐸𝑥1−𝑥1∙𝐸𝑥2−𝑥2=0. There could be good reason to assume 𝑐𝑜𝑣𝑥1,𝑥2=0 based on physics grounds. In cases where this is not clear, it is not uncommon to simply assume there are no significant covariances without proper analysis to justify it. This is bad practice and can lead to poorly expressed and misleading confidence estimates. 
	Although the PoV expression was developed for the case of sampled data, it can also be applied to the case of Type B uncertainties because conceptually Type B uncertainties can also be treated as following to some probabilistic distribution. 
	Moreover, even though one can formally write the sensitivity coefficients 𝑆𝑥𝑖=𝜕𝑓𝜕𝑥𝑖 as a partial derivative, it might not be easy to express the derivatives analytically. Numerical differentiation can be used instead for well-behaved functions. In other cases, judgments may come into play, and one may need to poll several experts to get a distribution of views that can be propagated. When the assay involves logic trees, then one might consider performing many forward calculations by sampling the input variables according to their known uncertainty structure and correlations to construct the PDF of results.
	Including covariance between random variables when combining uncertainties rather than using a treatment that relies on the variables also being independent is an important concept. Of course, the emphasis is then placed on recognizing that correlation exists and on how to estimate the value of the covariance (or linear correlation coefficient). Visualization of the data is often a great help. Working in terms of the known independent variables is also often very helpful. The covariance can then be found by analysis. For instance, suppose the thickness of a container wall has been measured close in time using two different and independent techniques other than for the fact that both require a correction for temperature, 𝜃.
	Then, suppose the two thickness values are written as follows:
	(29)
	𝑙1=𝑦11−𝑎1(𝜃−𝜃1).
	(30)
	𝑙2=𝑦21−𝑎2(𝜃−𝜃2).
	The two values are clearly linked through the common temperature measurement, which is itself subject to measurement uncertainty. Forming the product of deviations about 𝜃=𝜃, the estimated mean value, leads to
	𝑑𝑙1𝑑𝑙2=𝜕𝑙1𝜕𝜃𝑑𝜃𝜕𝑙2𝜕𝜃𝑑𝜃=+𝑦1𝑎1𝑦2𝑎2𝑑𝜃2,
	(31)
	which, after averaging, becomes
	(32)
	𝑐𝑜𝑣𝑙1,𝑙2=𝑦1𝑎1𝑦2𝑎2𝜎𝜃2.
	Another instance where correlation is often important is when calibration-model parameters (e.g., slope and intercept) are estimated from a data set of calibration data. Because all the parameters are computed from the same calibration data set, the values are naturally covariant. Results derived using combinations of the model parameters (for instance, the ratio of the slope to the intercept) must take into account the correlation between then. Alternatively, one could formulate the problem directly, so that the intermediate results do not need to be either calculated or reported, and one could dither all of the input data consistent with the known uncertainty structure and generate the PDF of the sought-after result empirically by brute force.
	Data visualization (charts, diagrams, graphs, pictograms, animations) is a powerful way to communicate data and uncertainty. To avoid being misleading, it is also useful to keep in mind what a chart is not showing and that correlation is not causation. Aggregate data may conceal other factors that are at place such as operator differences, quieter mains power supply during the night shift, a gradually failing sensor, differences spectral analysis by software tool, and so on). 
	A more compact and convenient way to write the PoV equations for larger problems is to use the power of linear algebra. If
	(33)
	𝑦=𝑓𝑥1,𝑥2,….𝑥𝑛,
	where 𝑛 now denotes the number of variables, not a sample size, the variance 𝜎𝑦2 in 𝑦 can be expressed in matrix notation as
	(34)
	𝑉𝑦=𝐷𝑇𝑉𝑥𝐷,
	where 𝑉𝑦 is the covariance matrix for 𝑦, which for this problem is a 1 × 1 array with element 𝜎𝑦2. The covariance matrix, 𝑉𝑥, describes the uncertainty structure in and between the x-values and is given by
	𝑉𝑥=𝜎𝑥12𝑐𝑜𝑣𝑥1,𝑥2𝑐𝑜𝑣𝑥1,𝑥3…𝑐𝑜𝑣𝑥1,𝑥𝑛𝑐𝑜𝑣𝑥2,𝑥1𝜎𝑥22𝑐𝑜𝑣𝑥2,𝑥3…𝑐𝑜𝑣𝑥2,𝑥𝑛𝑐𝑜𝑣𝑥3,𝑥1𝑐𝑜𝑣𝑥3,𝑥2𝜎𝑥32…𝑐𝑜𝑣𝑥3,𝑥𝑛⋮⋮⋮…⋮𝑐𝑜𝑣𝑥𝑛,𝑥1𝑐𝑜𝑣𝑥𝑛,𝑥2𝑐𝑜𝑣𝑥𝑛,𝑥3…𝜎𝑥𝑛2.
	(35)
	The covariance matrix is symmetric and of size n × n. 
	𝐷 is the column vector of partial derivatives
	𝐷=𝜕𝑓𝜕𝑥1𝜕𝑓𝜕𝑥2𝜕𝑓𝜕𝑥3⋮𝜕𝑓𝜕𝑥𝑛,
	(36)
	and 𝐷𝑇 is its transpose.
	The previous result is easily generalized to the case where a collection of ys (y1, y2, y3, …. yn) are functions of the xs, (x1, x2, …. xn). This is a very common situation in practice. For example, the same calibration data set is used to determine several model (fit) parameters, or various nuclear data “constants” may be collectively evaluated from the same set of differential and integral experimental data. In this case, redefine 𝐷 as follows:
	𝐷=𝜕𝑓1𝜕𝑥1𝜕𝑓2𝜕𝑥1…𝜕𝑓𝑚𝜕𝑥1𝜕𝑓1𝜕𝑥2𝜕𝑓2𝜕𝑥2…𝜕𝑓𝑚𝜕𝑥2⋮⋮…⋮𝜕𝑓1𝜕𝑥𝑛𝜕𝑓2𝜕𝑥𝑛…𝜕𝑓𝑚𝜕𝑥𝑛,
	(37)
	where the elements may be populated by algebraic differentiation or numerically by finite-difference differentiation. 
	The matrix expression 𝑉𝑦=𝐷𝑇𝑉𝑥𝐷 now returns the m × m symmetric covariance matrix describing the covariance structure between the m y-values. 
	13. THE MATERIAL BALANCE EQUATION
	The material balance equation over an accounting period or interval of time, 𝑡, for the amount of material present in a material balance area (MBA), is a statement of the conservation of mass
	(38)
	𝐸𝑛𝑑𝑖𝑛𝑔=𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔+𝐼𝑛−𝑂𝑢𝑡−𝑀𝑈𝐹 𝑜𝑟 𝐼𝐷,
	where MUF is the so-called “material unaccounted For” amount, which is also commonly called inventory difference (ID), and (In – Out) accounts for all transfers across the MBA boundary and includes (in some instances) radioactive decay (e.g., for 241Pu). 
	Assuming normally distributed experimental quantities, the PDF for mass, 𝑚, is also approximately Gaussian
	𝑝𝑚∙𝑑𝑚=1𝜋∙𝑒𝑥𝑝−𝑚−𝑚𝑡𝑟𝑢𝑒2∙𝜎2∙𝑑𝑚2∙𝜎.
	(39)
	The safeguards objective is to make a timely detection of a significant quantity (1 significant quantity or more) of missing material with a given probability while maintaining some permissible small probability of false alarms. It follows familiar logic from Lloyd Currie’s work on detection and quantification limits. For an extension to Currie, see (Agboraw 2017; Kirkpatrick, Venkataraman, and Young 2013). 
	Rearranging and being a little more formal in notation, the ID may be expressed as follows:
	ID = [PB + (Receipts, X – Removals, Y)] – PE = BE-PE,
	where 
	PB and PE are the beginning (or opening) and ending (or closing) physical materials inventories based on locating the material and performing measurements, sampling, weighing, and analysis,
	and
	𝐵𝐸=BI+X-Y is the ending (or closing) accountancy book value based on the initial book inventory accounting records of (X-Y). 
	When BE-PE>0, the ID is positive, which could be interpreted as a loss of material. A large positive inventory difference outside the estimated error limits could indicate the following:
	 Accidental loss of material,
	 Accumulation of holdup in difficult-to-measure items of equipment,
	 A process change or operational problem,
	 Theft, or
	 Measurement bias that is not accounted for in the known random and systematic error sources.
	Both the opening book inventory and the physical inventory are based on measured values (except for verification by item counting when feasible). The limits of error can be large for complex processing facilities. Therefore, an ID within the limit of error (for example, a negative value) does not exclude the possibility of loss. Thus, the information provided by the material accounting system is also supplemented by information from the internal control system, the physical protection system, inspections, and evaluation of various kinds (including special investigations) to resolve any issues, and so on. 
	In the United States, all Nuclear Regulatory Commission- (NRC-) licensed fuel facilities authorized to possess more than one effective kilogram of special nuclear material fall under the NRC’s graded approach to safeguards and pursuant to 10 Code of Federal Regulations (CFR) 74.17. Operators must report the results of each physical inventory to the NRC. The frequency of physical inventory (6, 9, or 12 months) depends on the strategic significance (type and amounts) of material. 
	One measure of material balance closure over the period is determining whether the ID is consistent with zero within three times the standard error of inventory difference (SEID), “3σ.” If it is, and the ID does not exceed the facility/site specific regulatory (license) mass limits, no compelling reason exists to think a diversion has taken place or that an investigation is called for. 
	The SEID is used to describe total SD (random plus systematic for all assay methods) associated with an ID value. It is the nominal 68% (1-σ) confidence level. From the one-sided normal probability table (one sided if the statistical test is for loss only, not for gain), an ID corresponding to a mass-loss of approximately (𝑄−1.3∙𝑆𝐸𝐼𝐷) would be detected with 90% probability. This can be seen by centering the measurement distribution on Q and stepping back. 
	However, SEID is defined by US Department of Energy rules, not measurement science, as follows:
	For Category III licensees subject to 10 CFR 74.31 or 74.33, the SEID is defined to be equal to quadrature sum of both the measurement and nonmeasurement variances associated with an ID, i.e., 𝑆𝐸𝐼𝐷=𝑣𝑎𝑟(𝑚𝑒𝑎𝑠)+𝑣𝑎𝑟(𝑛𝑜𝑛−𝑚𝑒𝑎𝑠). 
	For both Category I licensees subject to 10 CFR 74.59 and Category II licensees subject to 10 CFR 10 74.43, the SEID is defined to be equal to the square root of the measurement variance (only) associated with an ID, i.e., 𝑆𝐸𝐼𝐷=𝑣𝑎𝑟(𝑚𝑒𝑎𝑠). 
	In some instances, some parts of the inventory may not have changed so that the exact same inventory value gets used in both the beginning and closing values, such as a piece of equipment or an item that has remained intact and unused throughout the period. In such cases, defining a new quantity is useful. This quantity is the active inventory (𝐴𝐼), which is a measure of throughput and the only part of the current inventory that is subject to new measurement uncertainty. Certain regulatory limit of error for inventory differences (LEID) are expressed in terms of the 𝐴𝐼. For example, in criteria such as (US Department of Energy 2003), the ID cannot exceed 2% of the AI (“throughput”) up to 2 kg with 90% confidence. For complex and highthroughput facilities maintaining 2% accuracy, though physical measurements alone, are usually extremely challenging or not practical. In this example, meeting the 2 kg quantity becomes the goal and might drive the overall accountancy strategy, which may include:
	 Process optimization and control and use of near-real-time monitoring,
	 Emphasis on high-accuracy instrument selection, calibration, and acceptable knowledge,
	 Definition of MBA boundaries, key measurement points, and the role of subMBAs, and
	 Frequency of material balance closure so that amounts are kept small.
	Because taking a facility down to perform wall-to-wall physical inventory is both time consuming and costly, designing the measurement strategy to be fully compliant in an efficient way should receive appropriate attention from the onset. 
	Often the NDA measurement program may support several needs, including operational, safety (criticality), materials control and accountancy, and waste management. The performance, uncertainty targets and reporting requirements of each consumer needs to be considered because retrofitting a solution can often be expensive and present a variety of issues. 
	14. TOP-DOWN VS. BOTTOM-UP UNCERTAINTY QUANTIFICATION FOR NONDESTRUCTIVE ASSAY IN SUPPORT OF THE MATERIAL BALANCE EQUATION
	Recall that the bottom-up approach propagates or combines error variances from all identified sources of measurement variation. In contrast, the alternative top-down approach does not concern itself with creating a complete uncertainty budget by each contributing factor. Instead, the precision and accuracy (inverse of the random error SD and the systematic error SD, respectively) are evaluated by comparing against known values (e.g., performance demonstration plan items), or against other reference methods, or by using round-robin comparisons which represent independent experiments. The emphasis is on the analysis of paired data (measured—assigned true), and the overall uncertainty is evaluated by statistical methods by looking at the empirically observed scatter. The topdown approach quantifies performance but without the insights provided by the bottom-up analysis. Typically, the top-down uncertainty exceeds the bottom-up uncertainty, suggesting that the bottom-up approach may be incomplete or biased low (overly optimistic). The difference is referred to as dark uncertainty because it is hidden or unrecognized, sometimes simply because fielded NDA methods have error sources that are not accounted for in NDA laboratory bottom-up evaluations.
	Sidebar 5. PRACTICE
	Sketch these two basic approaches to performance assessment and performance demonstration.
	The International Atomic Energy Agency’s (IAEA’s) material balance equation uses the Inspector’s
	(40)
	𝑀𝑈𝐹 =𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑀𝑈𝐹 – 𝐷,
	where D is a difference statistic between paired operator and inspector measurements. Better bottom-up UQ for NDA is needed in support of the material balance equation and to identify and manage dark uncertainty. Dark uncertainty is more commonly positive, which suggests that something has been overlooked in the bottom-up analysis or that the measurement process is not as well understood as believed. An experimenter is perhaps understandably proud of their technique and confident in their abilities to be overly optimistic and perhaps is not be aware of all uncertainty sources in fielded instruments. 
	It is important to remember in brainstorming the set of things that can influence the result that some of the most important variables may not be simple physical quantities, such as cross sections, energy spectra, mass compositions, geometry, and the like. Rather, variables can be implicit, such as assumptions and analysis procedures that may seem natural and obvious but should be challenged, nonetheless. For example, the add-a-source correction for passive neutron coincidence counting of drummed waste requires a volume-weighted-average response. However, typically experimental calibration data are available only on a crude spatial grid. This may point to a planning weakness. 
	For high moderator content, the mathematical procedure for how the volume-weighted-average response is defined (e.g., fit and integrate, create iso-contours and sum by ring, define volume elements around each point, the data into a tool such as AutoCAD and use splines and the built-in analysis tool) can have a large impact—50% or more relative difference between definitions. Some of the most critical dependencies may have to do with things that cannot be easily changed. For instance, the detector may exist already and not optimised to the current task, source tailoring to reduce 238U response in active neutron interrogation systems may be difficult to account for, wholly objective assessments might not be possible about the accuracy of simulation libraries used for calibration, and so forth. Many dependencies are intertwined even though they are often treated then as separate. For instance, if the source distribution is shifted, the counting precision and rate loss corrections will change even though a sensitivity analysis assumes the geometrical change in the detection efficiency is the main aspect of the measurement that was changed. 
	CHAPTER 1 SUMMARY
	 A scientific measurement or calculation is incomplete without a statement, supported by additional information, about the associated estimated uncertainty. 
	 “Uncertainty” is a useful qualitative term that often means the SD of a measurement error component. Sometimes “uncertainty” or “expanded uncertainty” refers to a CI width of half-width, which is often a multiple of the error SD.
	 We have seen how a variety of nonparametric and parametric statistical methods can be used to organize and summarize sample data and to make inferences.
	 Special mention was made of the Poisson distribution in connection to nuclear counting. It holds a special place in radiometric, and of the Central Limit Theorem, which is commonly invoked to justify using the normal distribution to describe a variety measurement uncertainties. 
	 Statistical methods help optimize and select measurement procedures to meet a given task and to maintain the measurement program within control.
	 Different ways to assess uncertainty contributions exist. The top-down and bottom-up approaches were introduced. 
	 There are different ways to combine various uncertainty contributions to form the total measurement uncertainty. This was illustrated by taking a worked example that used the PoV. We emphasized the importance of providing the consumer of the analysis with a sufficient understanding of the measurement process, the measurement equation (or algorithm), and the mathematical techniques of statistical analysis applied. General classes of measurement error models (additive, multiplicative, mixed), were discussed. The example of the material balance equation was provided, and the chapter concluded with the example of a density measurement. 
	 Because the intended audience for this book is measurement experts, the chapter emphasized bottom-up UQ. Approximately every 10 years, the IAEA publishes relative standard deviation estimates for many measurement methods commonly used in nuclear safeguards (Zhao 2010); these relative standard deviation estimates are used at the IAEA to estimate the SEID and to design sampling plans to detect data falsification. Many of the published relative standard deviation estimates are based on top-down UQ, using specialized analysis of variance. Bonner et al. (2016) and Burr (Burr, Croft, et al. 2016) provide further discussion on how statistical methods are used to verify nuclear material inventories (Bonner 2016; Burr, Croft, et al. 2016; Burr, Krieger, et al. 2016). The American Society for Testing and Materials maintains a number of useful standards and guides in NDA instruments and methods and the National Institute of Standards and Technology has a very good on-line handbook on statistical methods (National Institute of Standards and Technology 2012).
	EXERCISES
	Solutions for Exercises 3, 4, and 6 are included at the end of this chapter.
	Exercise 1
	Consider the following contrived example in which the number of counts in channel two is twice that of channel one. Consider the linear combination 𝑦=2𝑥1+3𝑥2 and, for instance, if the units of 𝑥1 and 𝑥2 are units of activity 𝑦 that might be intended to be a measure of radiation damage. 
	1. Using the data in Table 3, calculate the mean, variance of 𝑥1 and 𝑥2, and the covariance and linear correlation coefficient between them. Plot 𝑥2 against 𝑥1 to get a visual sense of whether the correlation is meaningful.
	2. Combine the uncertainties by PoV. What is the effect of neglecting covariance?
	3. Show that the combined uncertainty (in this case) is the same as in using only the independent variable 𝑥1 and writing 𝑦=8𝑥1. 
	Table 3. Numerical data for use in the PoV example.
	Reading
	𝒙𝟐 [Bq]
	𝒙𝟏 [Bq]
	20
	10
	1
	18
	9
	2
	22
	11
	3
	24
	12
	4
	16
	8
	5
	In this case, five y-values could be generated from the paired data and the results computed directly. However, in general, this leads to combining uncertainties for which no simple table exists. Yet the idea of generating a distribution of y-values by Monte Carlo sampling of all the input variables from distribution (including bootstrapping of finite samples) can be an attractive alternative way of evaluating the overall uncertainty.
	Exercise 2
	Letting 𝑦=𝑓(𝑥), find the relative SD 𝜎𝑦𝑦 for 𝜎𝑥𝑥=0.01 when: (1) 𝑓𝑥=𝑎𝑥−1; (2) 𝑓𝑥=𝑎𝑥−12; (3) 𝑓𝑥=𝑎𝑥0; (4) 𝑓𝑥=𝑎𝑥12; (5) 𝑓𝑥=𝑎𝑥1; (6) 𝑓𝑥=𝑎𝑥32; (7) 𝑓𝑥=𝑎𝑥2; (8) 𝑓𝑥=𝑙𝑛(𝑎𝑥).
	Exercise 3
	Let 𝑓=𝑥−𝑎 and 𝑔=𝑦−𝑏. Find 𝑐𝑜𝑣𝑓,𝑔 given 𝑎 and 𝑏 are simple constants and 𝑥 and 𝑦 are measured values with a finite covariance.  
	Exercise 4
	If the correction factor 𝜃=1+𝜐𝑑𝜐11+𝑟𝜐𝑑𝜐12, what is the fraction standard uncertainty 𝜎𝑓𝑓 in 𝑓 due to the fractional standard uncertainty in 𝜐𝑑? 
	Hint: For the function 𝑓𝑥=𝑇𝑥𝐿2𝑥, show that the derivative 𝑓′ of 𝑓𝑥 with respect to 𝑥 is 𝑓′=𝑇′𝑇−2𝐿′𝐿.
	Exercise 5
	Let 𝑦1=𝑥1𝑥1+𝑥2 and 𝑦2=𝑥2𝑥1+𝑥2 with 𝜎𝑥12=1, 𝜎𝑥22=1, 𝑐𝑜𝑣𝑥1,𝑥2=0. 
	Show 𝑦1=0.4±0.072, 𝑦2=0.6±0.072, and 𝑐𝑜𝑣𝑦1,𝑦2=−0.0052.
	Define a new relationship, z=𝑦1+𝑦2. Using 𝑉𝑧=𝐷𝑇𝑉𝑦𝐷, show 𝑧=1±0, which is correct because by definition 𝑦1+𝑦2=𝑥1+𝑥2𝑥1+𝑥2. (See Section 12).
	Exercise 6
	Let 𝑦1=𝑥 and 𝑦2=𝑥2; 𝑦1 and 𝑦2 are clearly correlated. For 𝑧=𝑦2𝑦1, show 𝜎𝑧2=𝜎𝑥2. 
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	Exercise 3 Solution 
	𝑐𝑜𝑣𝑓,𝑔=𝑑𝑓𝑑𝑔=𝑑𝑥𝑑𝑦=𝑐𝑜𝑣(𝑥,𝑦). Note that we have used the shorthand 𝑑𝑓=𝑓−𝑓=𝑥−𝑎−𝑥−𝑎=𝑥−𝑥, 𝑑𝑔 = 𝑦−𝑦 and 𝑐𝑜𝑣𝑓,𝑔=𝑥−𝑥𝑦−𝑦. This also yields the useful sample result for paired data: 𝑐𝑜𝑣𝑥,𝑦=𝑥𝑦−𝑥𝑦. For the special case 𝑥=𝑦, this reduces to 𝑐𝑜𝑣𝑥,𝑥=𝑣𝑎𝑟𝑥=𝑥2−𝑥2. 
	Notably, because the PoV method linearizes the relationship between predictor and response and requires the function to be well behaved over the region of interest, some of the results obtained by the mechanical application of the PoV formula may require additional scrutiny for validity. For example, consider the case where the measurand 𝑦 is obtained from 1𝑥, where 𝑥 is a random variable. Suppose 𝑥 is distributed according to a flat (uniform or rectangular) distribution between the limits 𝑎 and 𝑏, where 𝑏>𝑎>0. The 𝑥-distribution is symmetric about the mean 𝜇𝑥=𝑏+𝑎2 and has a SD 𝜎𝑥=𝑏−𝑎12. The 𝑦-distribution can be obtained by invoking 1:1 correspondence between 𝑦 and 𝑥, and hence incremental probabilities, i.e., 𝑝𝑦𝑑𝑦=𝑝𝑥𝑑𝑥, which results in 𝑝𝑦=−1𝑏−𝑎∙1𝑦2 between the lower limit 1𝑏 and the upper limit 1𝑎. As seen immediately, the distribution is not symmetric, nor is it centered on 1𝜇𝑥. In fact, the expectation value of 𝑦 is 𝜇𝑦=1𝑏−𝑎𝑎𝑏𝑑𝑥𝑥=1𝑏−𝑎∙ln𝑏𝑎=𝑙𝑛𝑏+𝑎2+𝑏−𝑎2𝑏+𝑎2−𝑏−𝑎2, which can be shown to tend to 1𝑏+𝑎2=1𝜇𝑥 in the limit 𝑏−𝑎2𝑏+𝑎2=3𝜎𝑥𝜇𝑥→0, i.e., when the 𝑥distribution is narrow. As an exercise, show under what conditions 𝜎𝑦𝜇𝑦→𝜎𝑥𝜇𝑥. 
	1/X does not have any finite moments if X ~ uniform on (0,1) (or even if X ~ normal))
	Turning now to the case where the 𝑥-distribution is normal, it is again found that the 𝑦-distribution is not normal and that the uncertainty propagation is inherently nonlinear. In this case, we must also confront the theoretical possibility that 𝑥 can be arbitrarily close to zero so that 1𝑥 can become extremely large and, in fact, 1𝑥 has a Cauchy distribution and so all moments are infinite. If 𝜇𝑥≥3𝜎𝑥, then as a practical matter 1𝑥 can be truncated so that all moments are finite, and the truncation has any effect with less than 1% relative frequency. However, if 𝜇𝑥≤3𝜎𝑥, then truncation might not be acceptable, and the variance is infinite As a rule of thumb, if 𝜎𝑥𝜇𝑥<0.1, the 68.3% CI will be well approximated by PoV with about 10% or better. 
	The takeaway message is that when applying PoV to reciprocal quantities, always check whether PoV leads to a valid approximation for the task or use an alternative method to estimate CIs, such as Monte Carlo sampling. However, even Monte Carlo sampling might be misleading, such as in the case where X has a normal distribution with large or moderate relative SD as just described.
	Exercise 4 Solution 
	𝜐𝑑𝜐11+𝜐𝑑𝜐1−2𝑟𝜐𝑑𝜐11+𝑟𝜐𝑑𝜐1𝜎𝜐𝑑𝜐𝑑.
	Exercise 6 Solution 
	Ignoring covariance, the result is 𝜎𝑧2=5𝜎𝑥2.

